Skip to main content

Harnessing Disorder at the Nanoscale

  • Reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Anderson localization; Coupled mode theory; Disordered plasmonics; Dissipative cavity; Product of random matrices; Random matrix theory

Definition

In nanotechnology, any fabrication process naturally introduces disorder and randomness at the nanoscale. Disorder is typically unwanted in applications, as it is associated with unpredictable degrees of freedom that are difficult to control. However, it can be demonstrated that disorder supports fascinating and counterintuitive phenomena, which can be harnessed at the nanoscale for the realization of specific functionalities.

Introduction

It is a common perception that the presence of disorder influences negatively the properties of a physical system. Nevertheless, there are several cases in which disorder plays a positive role and can be exploited to develop novel applications. In general, the introduction of disorder significantly increases the complexity of the system under examination, but, as is often seen in nature, an...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fratalocchi, A., Conti, C., Ruocco, G.: Three-dimensional ab-initio investigation of light-matter interaction in mie lasers. Phys. Rev. A. 78, 013806 (2008). doi:10.1103/Phys-reva.78.013806

    Article  Google Scholar 

  2. Liu, C., Di Falco, A., Molinari, D., Khan, Y., Ooi, B.S., Krauss, T.F., Fratalocchi, A.: Enhanced energy storage in chaotic optical resonators. Nat. Photonics 7, 474 (2013)

    Google Scholar 

  3. Liu, C., Di Falco, A., Fratalocchi, A.: Dicke phase transition with multiple superradiant states in quantum chaotic resonators. Phys. Rev. X 4, 021048 (2014)

    Google Scholar 

  4. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  Google Scholar 

  5. Wiersma, D.S., Bartolini, P., Lagendijk, A., Righini, R.: Localization of light in a disordered medium. Nature 390, 671 (1997)

    Article  Google Scholar 

  6. Conti, C., Fratalocchi, A.: Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nat. Phys. 4, 794 (2008)

    Article  Google Scholar 

  7. Shalaev, V.M.: Nonlinear Optics of Random Media – Fractal Composites and Metal-Dielectric Films. Springer Tracts in Modern Physics, vol. 158. Springer, Berlin (2000)

    Book  Google Scholar 

  8. Shahbazyan, T.V., Stockman, M.I.: Plasmonics: Theory and Applications. Springer, Dordrecht (2014)

    Google Scholar 

  9. Haake, F.: Quantum Signatures of Chaos. Springer Series in Synergetics, vol. 54, 3rd edn. Springer, Berlin (2010)

    Book  Google Scholar 

  10. Crisanti, A., Paladin, G., Vulpiani, A.: Products of Random Matrices: In Statistical Physics, Softcover Reprint of the Original 1st ed. 1993 edition ed. Springer S.l, (2012)

    Google Scholar 

  11. Haus, H.A.: Waves and Fields in Optoelectronics. Prentice Hall, Englewood Cliffs (1984)

    Google Scholar 

  12. Deutsch, J.M., Paladin, G.: Product of random matrices in a microcanonical ensemble. Phys. Rev. Lett. 62, 695 (1989)

    Article  Google Scholar 

  13. Comtet, A., Texier, C., Tourigny, Y.: Lyapunov exponents, one-dimensional Anderson localization and products of random matrices. J. Phys. A 46, 254003 (2013)

    Article  Google Scholar 

  14. Mezard, M., Parisi, G., Virasoro, M.: Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications. World Scientific Lecture Notes in Physics, vol. 9. World Scientific Press, Teaneck (1986)

    Google Scholar 

  15. Molinari, D., Fratalocchi, A.: Route to strong localization of light: the role of disorder. Opt. Express 20, 18156 (2012)

    Article  Google Scholar 

  16. Brongersma, M.L., Hartman, J.W., Atwater, H.A.: Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B 62, R16356 (2000)

    Article  Google Scholar 

  17. Dal Negro, L., Feng, N.-N.: Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles. Opt. Express 15, 14396 (2007)

    Article  Google Scholar 

  18. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-difference Time-domain Method. Artech House, Boston (2005)

    Google Scholar 

  19. Liu, C., van der Wel, R.E.C., Rotenberg, N., Kuipers, L., Krauss, T.F., Di Falco, A., Fratalocchi, A.: Model dispersive media in finite-difference time-domain method with complex-conjugate pole- residue pairs. Nat. Phys. 11, 358 (2015)

    Article  Google Scholar 

  20. Han, M.H., Dutton, R.W., Fan, S.H.: IEEE Microwave Wireless Compon. Lett. 16, 119 (2006)

    Article  Google Scholar 

  21. Totero Gongora, J.S., Fratalocchi, A.: Ab-initio techniques for light matter interaction at the nanoscale. In Computational Chemistry Methodology in Structural Biology and Material Sciences, Apple Academic Press, Oakville (to appear, expected Dec. 2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Sebastian Totero Gongora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Gongora, J.S.T., Fratalocchi, A. (2016). Harnessing Disorder at the Nanoscale. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_101015

Download citation

Publish with us

Policies and ethics