Skip to main content

Anoxia, Hypoxia, And Dead Zones

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Synonyms

Anoxic; Anoxic basins; Euxina; Hypoxic, Low dissolved oxygen; Oxygen minimum layer; Oxygen minimum zone

Definition

Anoxia is a condition of no, or at times very little, dissolved oxygen in marine or freshwater systems, which has drastic consequences to normal ecosystem functioning including biogeochemical cycling.

Hypoxia is a condition of low dissolved oxygen concentrations in marine or freshwater systems, which has adverse consequences to normal ecosystem functioning including biogeochemical cycling that range from mild to severe disruption.

Dead zone is an area of hypoxia or anoxia that is related to anthropogenic activity.

Introduction

Oxygen is necessary to sustain the life of fishes and virtually all higher invertebrates. When the supply of oxygen is cut off from bottom waters, usually from temperature and/or salinity stratification of the water column that separates surface and bottom layers, or consumption of oxygen through respiration exceeds resupply, oxygen...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-8801-4_82
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   549.99
Price excludes VAT (USA)
  • ISBN: 978-94-017-8801-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   549.99
Price excludes VAT (USA)
Anoxia, Hypoxia, And Dead Zones, Figure 1
Anoxia, Hypoxia, And Dead Zones, Figure 2
Anoxia, Hypoxia, And Dead Zones, Figure 3
Anoxia, Hypoxia, And Dead Zones, Figure 4

Bibliography

  • Andrews, M. J., and Rickard, D. G., 1980. Rehabilitation of the inner Thames estuary. Marine Pollution Bulletin, 11, 327–332.

    Google Scholar 

  • Arntz, W. E., Gallardo, V. A., Gutiérrez, D., Isla, E., Levin, L. A., Mendo, J., Neira, C., Rowe, G., Tarazona, J., and Wolff, M., 2006. ENSO and similar perturbation effects on the benthos of the Humboldt, California and Benguela Current upwelling ecosystems. Advances in Geosciences, 6, 243–265.

    Google Scholar 

  • Baden, S. P., Loo, L.-O., Pihl, L., and Rosenberg, R., 1990. Effects of eutrophication on benthic communities including fish Swedish west coast. Ambio, 19, 113–122.

    Google Scholar 

  • Baird, D., Christian, R. R., Peterson, C. H., and Johnson, G. A., 2004. Consequences of hypoxia on estuarine ecosystem function: energy diversion from consumers to microbes. Ecology Applications, 14, 805–822.

    Google Scholar 

  • Benson, B. B., and Krause, D., 1984. The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere: 1. Oxygen. Limnologie and Oceanography, 25, 662–671.

    Google Scholar 

  • Berelson, W. M., 1991. The flushing of two deep-sea basins, Southern California Borderland. Limnology and Oceanography, 36, 1150–1166.

    Google Scholar 

  • Boesch, D. F., and Rabalais, N. N., 1991. Effects of hypoxia on continental shelf benthos: comparisons between the New York Bight and the Northern Gulf of Mexico. In Tyson, R. V., and Pearson, T. H. (eds.), Modern and Ancient Continental Shelf Anoxia. London: The Geological Society, pp. 27–34. Geological Society special publication number 58.

    Google Scholar 

  • Breitburg, D. L., Hondorp, D. W., Davias, L. W., and Diaz, R. J., 2009. Hypoxia, nitrogen and fisheries Integrating effects across local and global landscapes. Annual Review of Marine Science, 1, 329–350.

    Google Scholar 

  • Brill, R. W., 1996. Selective advantages conferred by the high performance physiology of tunas, billfishes, and dolphin fish. Comparative Biochemistry and Physiology, 113, 3–15.

    Google Scholar 

  • Caddy, J. F., 1993. Towards a comparative evaluation of human impacts on fishery ecosystems of enclosed and semi-enclosed seas. Reviews in Fisheries Science, 1, 57–95.

    Google Scholar 

  • Carpenter, S. R., Ludwig, D., and Brock, W. A., 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecology Application, 9, 751–771.

    Google Scholar 

  • Chabot, D., and Dutil, J.-D., 1999. Reduced growth of Atlantic cod in non-lethal hypoxic conditions. Journal of Fish Biology, 55, 472–491.

    Google Scholar 

  • Chapman, P., and Shannon, L. V., 1985. The Benguela ecosystem Part II Chemistry and related processes. Oceanography and Marine Biology. Annual Review, 23, 183–251.

    Google Scholar 

  • Cheng, W., Liu, C.-H., Hsu, J.-P., and Chen, J.-C., 2002. Effect of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenbergii and its susceptibility to pathogen Enterococcus. Fish & Shellfish Immunology, 13, 351–365.

    Google Scholar 

  • Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–253.

    Google Scholar 

  • Cockroft, A. C., 2001. Jasus lalandii “walkouts” or mass strandings in South Africa during the 1990’s: an overview. Marine and Freshwater Research, 52, 1085–1094.

    Google Scholar 

  • Conley, D. J., Carstensen, J., Aigars, J., Axe, P., Bonsdorff, E., Eremina, T., Haahti, B.-M., Humborg, C., Jonsson, P., Kotta, J., Lännegren, C., Larsson, U., Maximov, A., Rodriguez Medina, M., Lysiak-Pastuszak, E., Remeikaité-Nikiené, N., Walve, J., Wilhelms, S., and Zillén, L., 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science and Technology, 45, 6777–6783.

    Google Scholar 

  • Cooper, S. R., and Brush, G. S., 1991. Long-term history of Chesapeake Bay anoxia. Science, 254, 992–996.

    Google Scholar 

  • Diaz, R. J., and Breitburg, D. L., 2009. The hypoxic environment. In Richards, J. G., Farrell, A. P., and Brauner, C. J. (eds.), Fish Physiology. Burlington: Academic Press, Vol. 27, pp. 1–23.

    Google Scholar 

  • Diaz, R. J., and Rosenberg, R., 1995. Marine benthic hypoxia a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology. Annual Review, 33, 245–303.

    Google Scholar 

  • Diaz, R. J., and Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929.

    Google Scholar 

  • Diaz, R., Selman, M., and Chique, C., 2010. Global Eutrophic and Hypoxic Coastal Systems. World Resources Institute. Eutrophication and Hypoxia: Nutrient Pollution in Coastal Waters. http://www.wri.org/project/eutrophication.

  • Elmgren, R., 1989. Man’s impact on the ecosystem of the Baltic Sea energy flows today and at the turn of the century. Ambio, 18, 326–332.

    Google Scholar 

  • Escribano, R., Daneri, G., Farías, L., Gallardo, V. A., González, A., Gutiérrez, D., Lange, C. B., Morales, C., Pizarro, O., Ulloa, O., and Braun, M., 2004. Biological and chemical consequences of the 1997–1998 El Niño in the Chilean coastal upwelling system: a synthesis. Deep-Sea Research Part II, 51, 2389–2411.

    Google Scholar 

  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K., 2005. Global consequences of land use. Science, 309, 570–574.

    Google Scholar 

  • Fonselius, S. H., 1969. Hydrography of the Baltic deep basins III. Gothenburg: Fishery Board of Sweden, pp. 1–97. Series Hydrography Report No. 23.

    Google Scholar 

  • Fry, F. E. J., 1971. The Effect of Environmental Factors on the Physiology of Fish. New York: Academic Press.

    Google Scholar 

  • Fuenzalida, R., Schneider, W., Graces-Vargas, J., Bravo, L., and Lange, C., 2009. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep-Sea Research Part II, 56, 992–1003.

    Google Scholar 

  • Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vörösmarty, C. J., 2004. Nitrogen cycles past, present, and future. Biogeochemistry, 70, 153–226.

    Google Scholar 

  • Galloway, J. N., Leach, A. M., Bleeker, A., and Erisman, J. W., 2013. A chronology of human understanding of the nitrogen cycle. Philosophical Transactions of the Royal Society B, 368, 201–301. http://dx.doi.org/10.1098/rstb.2013.0120

  • Gilbert, D., Rabalais, N. N., Díaz, R. J., and Zhang, J., 2009. Evidence for greater oxygen depletion rate declines in the coastal ocean than in the open ocean. Biogeosciences Discussion, 6, 9127–9160.

    Google Scholar 

  • Graham, J. B., 1990. Ecological, evolutionary, and physical factors influencing aquatic animal respiration. American Zoologist, 30, 137–146.

    Google Scholar 

  • Grantham, B. A., Chan, F., Nielsen, K. J., Fox, D. S., Barth, J. A., Huyer, A., Lubchenco, J., and Menge, B. A., 2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 429, 749–754.

    Google Scholar 

  • Gutiérrez, D., Gallardo, V. A., Mayor, S., Neira, C., Vásquez, C., Sellanes, J., Rivas, M., Soto, A., Carrasco, F., and Baltazar, M., 2000. Effects of dissolved oxygen and fresh organic matter on the bioturbation potential of macrofauna in sublittoral sediments off Central Chile during the 1997/1998 El Niño. Marine Ecology Progress Series, 202, 81–99.

    Google Scholar 

  • Hamukuaya, H., O’Toole, M. J., and Woodhead, P. J. M., 1998. Observations of severe hypoxia and offshore displacement of cape hake over the Namibian shelf in 1994. South African Journal of Marine Science, 19, 57–59.

    Google Scholar 

  • Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Röhl, U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science, 293, 1304–1308.

    Google Scholar 

  • Helly, J. J., and Levin, L. A., 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research Part I, 51, 1159–1168.

    Google Scholar 

  • Howarth, R. W., and Marino, R., 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography, 51, 364–376.

    Google Scholar 

  • Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Lange, C. B., Lenihan, H. S., Pandol, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., and Warner, R. R., 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–638.

    Google Scholar 

  • Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., Coveney, M. F., Deneke, R., Dokulil, M. T., Foy, B., Gerdeaux, D., Hampton, S. E., Hilt, S., Kangur, K., Köhler, J., Lammens, E. H. H. R., Lauridsen, T. L., Manca, M., Miracle, M. R., Moss, B., Nõges, P., Persson, G., Phillips, G., Portielje, R., Romo, S., Schelske, C. L., Straile, D., Tatrai, I., Wille’n, E., and Winde, M., 2005. Lake responses to reduced nutrient loading: an analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50, 1747–1771.

    Google Scholar 

  • Jones, P. D., 2006. Water quality and fisheries in the Mersey estuary, England: a historical perspective. Marine Pollution Bulletin, 53, 144–154.

    Google Scholar 

  • Jørgensen, B. B., 1980. Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos, 34, 68–76.

    Google Scholar 

  • Justić, D., Legović, T., and Rottini-Sandrini, L., 1987. Trends in oxygen content 1911–1984 and occurrence of benthic mortality in the northern Adriatic Sea. Estuarine, Coastal and Shelf Science, 25, 435–445.

    Google Scholar 

  • Justić, D., Rabalais, N. N., and Turner, R. E., 2001. Modeling the impacts of decadal changes in riverine nutrient fluxes on coastal eutrophication near the Mississippi River Delta. Ecological Modelling, 152, 33–46.

    Google Scholar 

  • Karlson, K., Rosenberg, R., and Bonsdorff, E., 2002. Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters: a review. Oceanography and Marine Biology. Annual Review, 40, 427–489.

    Google Scholar 

  • Keeling, R. F., Körtzinger, A., and Gruber, N., 2010. Ocean deoxygenation in a warming world. Annual Review of Marine Science, 2, 199–229.

    Google Scholar 

  • Kodama, K., Aoki, I., and Shimizu, M., 2002. Long-term changes in the assemblage of demersal fishes and invertebrates in relation to environmental variations in Tokyo Bay. Japan Fish Management Ecology, 9, 303–313.

    Google Scholar 

  • Lim, H.-S., Diaz, R. J., Hong, J.-S., and Schaffner, L. C., 2006. Hypoxia and benthic community recovery in Korean coastal waters. Marine Pollution Bulletin, 52, 1517–1526.

    Google Scholar 

  • Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., and Jackson, J. B. C., 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312, 1806–1809.

    Google Scholar 

  • MA (Millennium Ecosystem Assessment), 2005. Ecosystems and Human Well-being Synthesis. Washington, DC: Island Press.

    Google Scholar 

  • Madrid, V. M., Taylor, G. T., Scranton, M. I., and Chistoserdov, A. Y., 2001. Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Applied and Environmental Microbiology, 67, 1663–1674.

    Google Scholar 

  • McQuatters-Gollop, A., Mee, L. D., Raitsos, D. E., and Shapiro, G. I., 2008. Non-linearities, regime shifts and recovery: the recent influence of climate on Black Sea chlorophyll. Journal of Marine Systems, 74, 649–658.

    Google Scholar 

  • Mee, L. D., 2001. Eutrophication in the Black Sea and a basin-wide approach to its control. In von Bodungen, B., and Turner, R. K. (eds.), Science and Integrated Coastal Management. Berlin, Germany: Dahlem University Press, pp. 71–91.

    Google Scholar 

  • Mee, L. D., 2006. Reviving dead zones. Scientific American, 80–85, Nov 06.

    Google Scholar 

  • Middelburg, J., and Levin, L. A., 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6, 1273–1293.

    Google Scholar 

  • Mirza, F. B., and Gray, J. S., 1981. The fauna of benthic sediments from the organically enriched Oslofjord, Norway. Journal of Experimental Marine Biology and Ecology, 54, 181–207.

    Google Scholar 

  • Monteiro, P., van der Plas, A., Melice, J.-L., and Florenchie, P., 2008. Interannual hypoxia variability in a coastal upwelling system Ocean-shelf exchange, climate and ecosystem-state implications. Deep-Sea Research Part I, 55, 435–450.

    Google Scholar 

  • Müller-Karger, F. E., Varela, R., Thunell, R., Scranton, M., Bohrer, R., Taylor, G., Capelo, J., Astor, Y., Tappa, E., Ho, T. Y., and Walsh, J. J., 2001. Annual cycle of primary production in the Cariaco Basin: response to upwelling and implications for vertical export. Journal of Geophysical Research, 106, 4527–4542.

    Google Scholar 

  • Müller-Karger, F. E., Varela, R., Thunell, R., Astor, Y., Zhang, H., Luerssen, R., and Hu, C., 2004. Processes of coastal upwelling and carbon flux in the Cariaco Basin. Deep-Sea Research Part II, 51, 927–943.

    Google Scholar 

  • Naqvi, S. W. A., Jayakumar, D. A., Narvekar, P. V., Naik, H., Sarma, V. V. S. S., D’Souza, W., Joseph, S., and George, M. D., 2000. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature, 408, 346–349.

    Google Scholar 

  • Newcombe, C. L., and Horne, W. A., 1938. Oxygen-poor waters of the Chesapeake Bay. Science, 88, 80–81.

    Google Scholar 

  • Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219.

    Google Scholar 

  • Nizzoli, D., Bartoli, M., Cooper, M., Welsh, D. T., Underwood, G. J. C., and Viaroli, P., 2007. Implications for oxygen, nutrient fluxes and denitrification rates during the early stage of sediment colonisation by the polychaete Nereis spp. in four estuaries. Estuarine, Coastal and Shelf Science, 75, 125–134.

    Google Scholar 

  • Officer, C. B., Biggs, R. B., Taft, J. L., Cronin, L. E., Tyler, M. A., and Boynton, W. R., 1984. Chesapeake Bay anoxia: origin, development, and significance. Science, 223, 22–27.

    Google Scholar 

  • Oguz, T., 2005. Long-term impacts of anthropogenic forcing on the Black Sea ecosystem. Oceanography, 18, 104–113.

    Google Scholar 

  • Paulmier, A., and Ruiz-Pino, D., 2009. Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80, 113–128.

    Google Scholar 

  • Prince, E. D., and Goodyear, C. P., 2006. Hypoxia-based habitat compression of tropical pelagic fishes. Fisheries Oceanography, 15, 451–464.

    Google Scholar 

  • Rabalais, N. N., 2004. Eutrophication. In Robinson, A. R., McCarthy, J., and Rothschild, B. J. (eds.), The Global Coastal Ocean Multiscale Interdisciplinary Processes. Cambridge: Harvard University Press. The Sea, Vol. 13, pp. 819–865.

    Google Scholar 

  • Rabalais, N. N., and Gilbert, D., 2009. Distribution and consequences of hypoxia. In Urban, E. R., Sundby, B., Malanotte-Rizzoli, P., and Milello, J. (eds.), Watersheds, Bays, and Bounded Seas: The Science and Management of Semi-Enclosed Marine Systems. Washington, DC: Island Press, pp. 209–225.

    Google Scholar 

  • Rabalais, N. N., and Turner, R. E. (eds.), 2001. Coastal Hypoxia Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58. Washington, DC: American Geophysical Union, p. 454.

    Google Scholar 

  • Rabalais, N. N., Harper, D. E., Jr., and Turner, R. E., 2001. Responses of nekton and demersal and benthic fauna to decreasing oxygen concentrations. In Rabalais, N. N., and Turner, R. E. (eds.), Coastal Hypoxia Consequences for Living Resources and Ecosystems. Coastal and Estuarine Studies 58. Washington, DC: American Geophysical Union, pp. 115–128.

    Google Scholar 

  • Rabalais, N. N., Turner, R. E., and Wiseman, W. J., 2002. Gulf of Mexico hypoxia, aka the dead zone. Annual Review of Ecology Systematics, 33, 235–263.

    Google Scholar 

  • Rabalais, N. N., Diaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J., 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7, 585–619.

    Google Scholar 

  • Richards, F. A., 1965. Anoxic basins and fjords. In Riley, J. P., and Skirrow, G. (eds.), Chemical Oceanography. New York: Academic Press, Vol. 1, pp. 611–645.

    Google Scholar 

  • Sale, J. W., and Skinner, W. W., 1917. The vertical distribution of dissolved oxygen and the precipitation of salt water in certain tidal areas. Franklin Institute Journal, 184, 837–848.

    Google Scholar 

  • Scavia, D., Rabalais, N. N., Turner, R. E., Justić, D., and Wiseman, W. J., Jr., 2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnology and Oceanography, 48, 951–956.

    Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science, 195, 260–262.

    Google Scholar 

  • Sen Gupta, B. K., Turner, R. E., and Rabalais, N. N., 1996. Seasonal oxygen depletion in continental-shelf waters of Louisiana: historical record of benthic foraminifers. Geology, 24, 227–230.

    Google Scholar 

  • Skei, J. M., 1983. Permanently anoxic marine basins: exchange of substances across boundaries. Ecological Bulletins, 35, 419–429.

    Google Scholar 

  • Smith, V. H., Joye, S. B., and Howarth, R. W., 2006. Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 51, 351–355.

    Google Scholar 

  • Stoeck, T., Taylor, G. T., and Epstein, S. S., 2003. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Applied and Environmental Microbiology, 69, 5656–5663.

    Google Scholar 

  • Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V., 2008. Expanding oxygen-minimum zones in the tropical oceans. Science, 320, 655–658.

    Google Scholar 

  • Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, D. W. R., Brandt, P., and Körtzinger, A., 2012. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change, 2, 33–37.

    Google Scholar 

  • Sturdivant, S. K., Diaz, R. J., and Cutter, G. R., 2012. Bioturbation in a declining oxygen environment, in situ observations from Wormcam. PLoS ONE, 7(4), e34539, doi:10.1371/journal.pone.0034539..

    Google Scholar 

  • Taylor, G. T., Scranton, M. I., Iabichella, M., Ho, T.-Y., Thunell, R. C., and Varela, R., 2001. Chemoautotrophy in the redox transition zone of the Cariaco Basin. A significant source of midwater organic carbon production. Limnology and Oceanography, 46, 148–163.

    Google Scholar 

  • Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D., and Swackhamer, D., 2001. Forecasting agriculturally driven global environmental change. Science, 292, 281–284.

    Google Scholar 

  • Tolmazin, R., 1985. Changing coastal oceanography of the Black Sea. I. Northwestern shelf. Progress in Oceanography, 15, 217–276.

    Google Scholar 

  • Tomasko, D. A., Anastasiou, C., and Kovach, C., 2006. Dissolved oxygen dynamics in Charlotte Harbor and its contributing watershed, in response to hurricanes Charley, Frances, and Jeanne – impacts and recovery. Estuaries and Coasts, 29, 932–938.

    Google Scholar 

  • Turner, R. E., Qureshi, N., Rabalais, N. N., Dortch, Q., Justić, D., Shaw, R. F., and Cope, J., 1998. Fluctuating silicate: nitrate ratios and coastal plankton food webs. Proceedings of the National Academy of Sciences of the United States of America, 95, 13048–13051.

    Google Scholar 

  • Turner, R. E., Rabalais, N. N., and Justić, D., 2006. Predicting summer hypoxia in the northern Gulf of Mexico Riverine N, P, and Si loading. Marine Pollution Bulletin, 52, 139–148.

    Google Scholar 

  • Turner, R. E., Rabalais, N. N., and Justić, D., 2008. Gulf of Mexico hypoxia alternate states and a legacy. Environmental Science and Technology, 42, 2323–2327.

    Google Scholar 

  • Vaquer-Sunyer, R., and Duarte, C. M., 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 15452–15457.

    Google Scholar 

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J. M., 1997. Human domination of earth’s ecosystems. Science, 277, 494–499.

    Google Scholar 

  • Weissberger, E. J., Coiro, L. L., and Davey, E. W., 2009. Effects of hypoxia on animal burrow construction and consequent effects on sediment redox profiles. Journal of Experimental Marine Biology and Ecology, 371, 60–67.

    Google Scholar 

  • Zaitsev, Y. P., 1992. Recent changes in the trophic structure of the Black Sea. Fisheries Oceanography, 1, 180–189.

    Google Scholar 

  • Zimmerman, A. R., and Canuel, E. A., 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69, 117–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Diaz, R.J. (2016). Anoxia, Hypoxia, And Dead Zones. In: Kennish, M.J. (eds) Encyclopedia of Estuaries. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8801-4_82

Download citation