Almeida, S. S., Amaral, D. D., and Silva, A. S. L., 2004. Floristic analysis and structure of tidal flooded forests in the Amazonian estuary. Acta Amazonica, 34, 513–524.
Google Scholar
Alongi, D. M., 2009. The Energetics of Mangrove Forests. New York: Springer.
Google Scholar
Ball, M. C., 1988. Ecophysiology of mangroves. Trees-Structure and Function, 2, 129–142.
Google Scholar
Boto, K. G., and Wellington, J. T., 1983. Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest. Marine Ecology Progress Series, 11, 63–69.
Google Scholar
Brinson, M. M., Bradshaw, H. D., and Jones, M. N., 1985. Transitions in forested wetlands along gradients of salinity and hydroperiod. Journal of the Elisha Mitchell Scientific Society, 101, 76–94.
Google Scholar
Cattanio, J. H., Anderson, A. B., and Carvalho, M. S., 2002. Floristic composition and topographic variation in a tidal floodplain forest in the Amazon estuary. Revista Brasileira De Botanica, 24, 419–430.
Google Scholar
Conner, W. H., Doyle, T. W., and Krauss, K. W. (eds.), 2007. Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Dordrecht: Springer.
Google Scholar
Courtwright, J., and Findlay, S. E. G., 2011. Effects of microtopography on hydrology, physiochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands, 31, 239–249.
Google Scholar
Craft, C., Clough, J., Ehman, J., Joye, S., Park, R., Pennings, S., Guo, H., and Machmuller, M., 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 7, 73–78.
Google Scholar
Doyle, T. W., Krauss, K. W., Conner, W. H., and From, A. S., 2010. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. Forest Ecology and Management, 259, 770–777.
Google Scholar
Duberstein, J. A., and Conner, W. H., 2009. Use of hummocks and hollows by trees in tidal freshwater forested wetlands along the Savannah River. Forest Ecology and Management, 258, 1613–1618.
Google Scholar
Duke, N. C., Ball, M. C., and Ellison, J. C., 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7, 27–47.
Google Scholar
Ellison, A. M., 2004. Wetlands of Central America. Wetlands Ecology and Management, 12, 3–55.
Google Scholar
Hackney, C. T., Avery, G. B., Leonard, L. A., Posey, M., and Alphin, T., 2007. Biological, chemical, and physical characteristics of tidal freshwater swamp forests of the Lower Cape Fear River/Estuary, North Carolina. In Conner, W. H., Doyle, T. W., and Krauss, K. W. (eds.), Ecology of Tidal Freshwater Forested Wetlands of the Southeastern United States. Dordrecht: Springer, pp. 183–221.
Google Scholar
Krauss, K. W., and Ball, M. C., 2013. On the halophytic nature of mangroves. Trees-Structure and Function, 27, 7–11.
Google Scholar
Krauss, K. W., Lovelock, C. E., McKee, K. L., Lopez-Hoffman, L., Ewe, S. M. L., and Sousa, W. P., 2008. Environmental drivers in mangrove establishment and early development: a review. Aquatic Botany, 89, 105–127.
Google Scholar
Krauss, K. W., Duberstein, J. A., Doyle, T. W., Conner, W. H., Day, R. H., Inabinette, L. W., and Whitbeck, J. L., 2009. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients. Wetlands, 29, 505–519.
Google Scholar
Lovelock, C., Bennion, V., Grinham, A., and Cahoon, D., 2011. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems, 14, 745–757.
Google Scholar
McKee, K. L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science, 91, 475–483.
Google Scholar
Mitsch, W. J., and Gosselink, J. G., 2000. Wetlands, 3rd edn. New York: Wiley.
Google Scholar
Prance, G. T., 1979. Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia, 31, 26–38.
Google Scholar
Reef, R., Feller, I. C., and Lovelock, C. E., 2010. Nutrition of mangroves. Tree Physiology, 30, 1148–1160.
Google Scholar
Rheinhardt, R. D., and Hershner, C., 1992. The relationship of below-ground hydrology to canopy composition in five tidal freshwater swamps. Wetlands, 12, 208–216.
Google Scholar
Saintilan, N., Rogers, K., and McKee, K. L., 2009. Salt marsh-mangrove interactions in Australasia and the Americas. In Gerardo, M. E. P., Wolanski, E., Cahoon, D. R., and Brinson, M. M. (eds.), Coastal Wetlands: An Integrated Ecosystem Approach. Amsterdam: Elsevier, pp. 855–883.
Google Scholar
Smith, T. J., III, 1992. Forest structure. In Robertson, A. I., and Alongi, D. M. (eds.), Tropical Mangrove Ecosystems. Washington: American Geophysical Union, pp. 101–136.
Google Scholar
Spalding, M., Kainuma, M., and Collins, L., 2010. World Atlas of Mangroves. London: Earthscan.
Google Scholar
Struyf, E., Jacobs, S., Meire, P., Jensen, K., and Barendregt, A., 2009. Plant communities of European tidal freshwater wetlands. In Barendregt, A., Whigham, D. F., and Baldwin, A. H. (eds.), Tidal Freshwater Wetlands. Leiden: Backhuys Publishers, pp. 59–70.
Google Scholar
Traill, L. W., Perhans, K., Lovelock, C. E., Prohaska, A., Mcfallan, S., Rhodes, J. R., and Wilson, K. A., 2011. Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Diversity and Distributions, 17, 1225–1233.
Google Scholar
Verhoeven, J. T. A., Whigham, D. F., van Logtestijn, R., and O’Neill, J., 2001. A comparative study of nitrogen and phosphorus cycling in tidal and non-tidal riverine wetlands. Wetlands, 21, 210–222.
Google Scholar