Australian Chirodropid Cubozoan Jellyfish Envenomation

  • James Tibballs
Reference work entry
Part of the Toxinology book series (TOXI)


The Australian box jellyfish, Chironex fleckeri, is a large dangerous jellyfish inhabiting the waters of northern Australia and nearby Southeast Asia. Despite intensive research over half a century, limited knowledge exists about its venom and toxins and of a related but much less potent chirodropid species Chiropsella bronzei. The jellyfish kills prey rapidly and may severely injure or kill humans with an array of potent toxins. The clinical treatment of human victims is supportive with limited assistance from an existing antivenom. The principal toxins are proteins of around 40–45 kDa which probably perforate cell membranes leading to immediate lysis and subsequent loss of function of vital organs and tissues including cardiac function. In addition, smaller proteins probably damage the function of excitable tissues by perturbations of function of voltage-gated ion channels. These mechanisms occur across the phylum Cnidaria whose members have homologous toxins. No specific treatment for the human victim exists, but effective treatments might be developed from observations that suggest that the poration and ion-channel effects of the toxins are susceptible to blockade with metallic compounds.


  1. Bailey PM, Bakker AJ, Seymour JE, Wilce JA. A functional comparison of the venom of three Australian jellyfish – Chironex fleckeri, Chiropsalmus sp., and gesCarybdea xaymacana – on cytosolic Ca2+, haemolysis and Artemia sp. lethality. Toxicon. 2005;45:233–42.CrossRefPubMedGoogle Scholar
  2. Barnes JH. Observations on jellyfish stingings in North Queensland. Med J Aust. 1960;2:993–9.Google Scholar
  3. Barnes JH. Studies on three venomous Cubomedusae. In: Rees WJ, editor. The Cnidaria and their evolution. New York: Academic; 1966.Google Scholar
  4. Barnes JH. Extraction of cnidarian venom from living tentacle. In: Russell FE, Saunders PR, editors. Animal toxins. Oxford: Pergamon Press; 1967.Google Scholar
  5. Baxter EH, Marr AGM. Sea wasp (Chironex fleckeri) venom: lethal, hemolytic and dermonecrotic properties. Toxicon. 1969;7:195–210.CrossRefPubMedGoogle Scholar
  6. Baxter EH, Marr AGM. Sea wasp (Chironex fleckeri) antivenene: neutralizing potency against the venom of three other jellyfish species. Toxicon. 1974;12:223–9.CrossRefPubMedGoogle Scholar
  7. Baxter EH, Marr AGM, Lane WR. Sea wasp (Chironex fleckeri) toxin - experimental immunity. In: Devries A, Kochwa E, editors. Toxins of animal and plant origin, vol. 3. New York: Gordon and Breach; 1973.Google Scholar
  8. Beadnell CE, Rider TA, Williamson JA, Fenner PJ. Management of a major box jellyfish (Chironex fleckeri) sting. Lessons from the first minutes and hours. Med J Aust. 1992;156:655–8.PubMedGoogle Scholar
  9. Bloom DA, Burnett JW, Alderslade P. Partial purification of box jellyfish (Chironex fleckeri) nematocyst venom isolated at the beachside. Toxicon. 1998;36:1075–85.CrossRefPubMedGoogle Scholar
  10. Bloom DA, Burnett JW, Hebel JR, Alderslade P. Effects of verapamil and CSL antivenom on Chironex fleckeri (Box-jellyfish) induced mortality. Toxicon. 1999;37:1621–6.CrossRefPubMedGoogle Scholar
  11. Brinkman D, Burnell J. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon. 2007;50:850–60.CrossRefPubMedGoogle Scholar
  12. Brinkman D, Burnell J. Partial purification of cytolytic venom proteins from the box jellyfish, Chironex fleckeri. Toxicon. 2008;51:853–63.CrossRefPubMedGoogle Scholar
  13. Brinkman DL, Burnell JN. Biochemical and molecular characterization of cubozoan protein toxins. Toxicon. 2009;54:1162–73.CrossRefPubMedGoogle Scholar
  14. Brinkman DL, Aziz A, Loukas A, Potriquet J, Seymour J, Mulvenna J. Venom proteome of the box Jellyfish Chironex fleckeri. PLoS One. 2012;7:e47866.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brinkman DL, Konstantakopoulos N, McInerney BV, et al. Chironex fleckeri (Box Jellyfish) venom proteins. Expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects. J Biol Chem. 2014;289:4798–812.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brinkman DL, Jia X, Potriquet J, et al. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics. 2015;16:407.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Burnett JW, Calton GJ. Response of the box-jellyfish (Chironex fleckeri) cardiotoxin to intravenous administration of verapamil. Med J Aust. 1983;2:192–4.PubMedGoogle Scholar
  18. Burnett JW, Othman IB, Endean R, Fenner PJ, Callanan VI, Williamson JA. Verapamil potentiation of Chironex (Box jellyfish) antivenom. Toxicon. 1990;28:242–4.CrossRefPubMedGoogle Scholar
  19. Calton GJ, Burnett JW. Partial purification of Chironex fleckeri (sea wasp) venom by immunochromatography with antivenom. Toxicon. 1986;24:416–20.CrossRefPubMedGoogle Scholar
  20. Carrette TJ, Cullen P, Little M, Peirera PL, Seymour JE. Temperature effects on box jellyfish venom: a possible treatment for envenomed patients? Med J Aust. 2002;177:654–5.PubMedGoogle Scholar
  21. Chaousis S, Smout M, Wilson D, Loukas A, Mulvenna J, Seymour J. Rapid short term and gradual permanent cardiotoxic effects of vertebrate toxins from Chironex fleckeri (Australian box jellyfish) venom. Toxicon. 2014;80:17–26.CrossRefPubMedGoogle Scholar
  22. Cleland JB, Southcott RV. Injuries to man from marine invertebrates in the Australian Region. Canberra: Nat Health Med Res Council; 1965. Special Report: Series no.12.Google Scholar
  23. Collins SP, Comis A, Marshall M, Hartwick RF, Howden MEH. Monoclonal antibodies neutralizing the haemolytic activity of Box jellyfish (Chironex fleckeri) tentacle extracts. Comp Biochem Physiol. 1993;106B:67–70.Google Scholar
  24. Crone HD. Chemical modification of the haemolytic activity of extracts from the box jellyfish Chironex fleckeri (Cnidaria). Toxicon. 1976a;14:97–107.CrossRefPubMedGoogle Scholar
  25. Crone HD. On inactivation by gangliosides of the haemolytic protein toxin from the sea wasp (Chironex fleckeri). Toxicon. 1976b;14:494–8.CrossRefPubMedGoogle Scholar
  26. Crone HD, Keen TEB. Chromatographic properties of the haemolysin from the cnidarian Chironex fleckeri. Toxicon. 1969;7:78–87.CrossRefGoogle Scholar
  27. Crone HD, Keen TEB. Further studies on the biochemistry of the toxins from the sea wasp Chironex fleckeri. Toxicon. 1971;9:145–51.CrossRefPubMedGoogle Scholar
  28. Currie BJ, Wood YK. Identification of Chironex fleckeri envenomation by nematocyst recovery from skin. Med J Aust. 1995;162:478–80.PubMedGoogle Scholar
  29. Currie BJ, McKinnon M, Whelan B. Alderslade P, The Gove chirodropid: a box jellyfish appearing in the “safe season”. Med J Aust. 2002:177–649.Google Scholar
  30. Edwards L, Hessinger DA. Portuguese Man-of-war (Physalia physalis) venom induces calcium influx into cells by permeabilizing plasma membranes. Toxicon. 2000;38:1015–28.CrossRefPubMedGoogle Scholar
  31. Edwards L, Luo E, Hall R, Gonzalez RR Jr, Hessinger DA. The effect of Portuguese man-of-war (Physalia physalis) venom on calcium, sodium and potassium fluxes of cultured embryonic chick heart cells. Toxicon. 2000;38:323–35.CrossRefPubMedGoogle Scholar
  32. Endean R. Separation of two myotoxins from nematocysts of the box jellyfish (Chironex fleckeri). Toxicon. 1987;25:483–92.CrossRefPubMedGoogle Scholar
  33. Endean R, Henderson L. Further studies of toxic material from nematocysts of the cubomedusan Chironex fleckeri Southcott. Toxicon. 1969;7:303–14.CrossRefPubMedGoogle Scholar
  34. Endean R, Henderson L. Some aspects of the biological activity of crude nematocyst toxin from Chironex fleckeri. In: Humm HJ, Lane CE, editors. Bioactive compounds from the sea. New York: Marcel Dekker; 1974.Google Scholar
  35. Endean R, Sizemore DJ. The use of verapamil to counter the effects of myotoxins from nematocysts of the box-jellyfish Chironex fleckeri. In: Gopalakrishnakone P, Tan CK, editors. Progress in venom and toxin research. Oxford: Pergamon Press; 1987. p. 499.Google Scholar
  36. Endean R, Sizemore DJ. The effectiveness of antivenom in countering the actions of box-jellyfish (Chironex fleckeri) nematocyst toxins in mice. Toxicon. 1988;26:425–31.CrossRefPubMedGoogle Scholar
  37. Endean R, Duchemin C, McColm D, Fraser EH. A study of the biological activity of toxic material derived from nematocysts of the cubomedusan Chironex fleckeri. Toxicon. 1969;6:179–204.CrossRefPubMedGoogle Scholar
  38. Endean R, Monks SA, Cameron AM. Toxins from the box-jellyfish Chironex fleckeri. Toxicon. 1993;31:397–410.CrossRefPubMedGoogle Scholar
  39. Fenner PJ, Harrison SL. Irukandji and Chironex fleckeri jellyfish envenomation in tropical Australia. Wilderness Environ Med. 2000;11:233–40.CrossRefPubMedGoogle Scholar
  40. Fenner PJ, Rodgers D, Williamson J. Box jellyfish antivenom and “Irukandji” stings. Med J Aust. 1986;144:665–6.PubMedGoogle Scholar
  41. Fenner PJ, Williamson JA, Blenkin JA. Successful use of Chironex antivenom by members of the Queensland ambulance transport brigade. Med J Aust. 1989;151:708–10.PubMedGoogle Scholar
  42. Freeman SE. Action of Chironex fleckeri toxins on cardiac transmembrane potentials. Toxicon. 1974;12:395–404.CrossRefPubMedGoogle Scholar
  43. Freeman SE, Turner RJ. A pharmacological study of the toxin of a Cnidarian Chironex fleckeri Southcott. Br J Pharmacol. 1969;35:510–22.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Freeman SE, Turner RJ. Cardiovascular effects of toxins isolated from the cnidarian Chironex fleckeri Southcott. Br J Pharmacol. 1971;41:154–66.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Freeman SE, Turner RJ. Cardiovascular effects of cnidarian toxins: a comparison of toxins extracted from Chiropsalmus quadrigatus and Chironex fleckeri. Toxicon. 1972;10:31–7.CrossRefPubMedGoogle Scholar
  46. Gershwin LA. Comments on Chiropsalmus (Cnidaria: Cubozoa: Chirodropida) : a preliminary revision of the Chiropsalmidae, with descriptions of two genera and two new species. Zootaxa. 2006;1231:1–42.Google Scholar
  47. Hartwick R, Callanan V, Williamson J. Disarming the box jellyfish. Nematocyst inhibition in Chironex fleckeri. Med J Aust. 1980;1:15–20.PubMedGoogle Scholar
  48. Henderson D, Easton RG. Stingose, a new and effective treatment for bites and stings. Med J Aust. 1980;2:146–50.PubMedGoogle Scholar
  49. Hughes RJA, Angus JA, Winkel KD, Wright CE. A pharmacological investigation of the venom extract of the Australian box jellyfish, Chironex fleckeri, in cardiac and vascular tissues. Toxicol Lett. 2012;209:11–20.CrossRefPubMedGoogle Scholar
  50. International Liaison Committee on Resuscitation. International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2015;132(16 suppl 1):S84–145.CrossRefGoogle Scholar
  51. Isbister GK. Antivenom efficacy or effectiveness: the Australian experience. Toxicology. 2010;268:148–54.CrossRefPubMedGoogle Scholar
  52. Jouiaei M, Yanagihara AA, Madio B, et al. Ancient venom systems: a review on cnidaria toxins. Toxins. 2015;7:2251–71.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kang C, Jin YB, Kwak J, et al. Protective effect of tetracycline against dermal toxicity induced by jellyfish venom. PLoS One. 2013;8(3):e57658.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Keen TEB. Recent investigations on sea-wasp stingings in Australia. Med J Aust. 1970;1:266–70.PubMedGoogle Scholar
  55. Keen TEB. Comparison of tentacle extracts from Chiropsalmus quadrigatus and Chironex fleckeri. Toxicon. 1971;9:249–54.CrossRefPubMedGoogle Scholar
  56. Keen TEB, Crone HD. The hemolytic properties of extracts of tentacles from the cnidarian Chironex fleckeri. Toxicon. 1969a;7:55–63.CrossRefPubMedGoogle Scholar
  57. Keen TEB, Crone HD. Dematonecrotic properties of extracts from the tentacles of the cnidarian Chironex fleckeri. Toxicon. 1969b;7:173–80.CrossRefPubMedGoogle Scholar
  58. Kingston CW, Southcott RV. Skin histopathology in fatal jellyfish stinging. Trans R Soc Trop Med Hyg. 1960;54:373–84.CrossRefPubMedGoogle Scholar
  59. Li L, McGee RG, Isbister G, Webster AC. Interventions for the symptoms and signs resulting from jellyfish stings. Cochrane Database Syst Rev. 2013;12:CD009688.Google Scholar
  60. Loten C, Stokes B, Worsley D, Seymour JE, Jiang S, Isbister GK. A randomised controlled trial of hot water (45°C) immersion versus ice packs for pain relief in bluebottle stings. Med J Aust. 2006;184:329–33.PubMedGoogle Scholar
  61. Lubbock R, Amos WB. Removal of bound calcium from nematocysts causes discharge. Nature (London). 1981;290:500–1.CrossRefGoogle Scholar
  62. Mustafa MR, White E, Hongo K, Othman I, Orchard CH. The mechanism underlying the cardiotoxic effect of the toxin from the jellyfish Chironex fleckeri. Toxicol Appl Pharmacol. 1995;133:196–206.CrossRefPubMedGoogle Scholar
  63. Naguib AMF, Bansal J, Calton GJ, Burnett JW. Purification of Chironex fleckeri venom components using Chironex immunoaffinity chromatography. Toxicon. 1988;26:387–94.CrossRefPubMedGoogle Scholar
  64. Nomura JT, Sato RL, Ahern RM, Snow JL, Kuwaye TT, Yamamoto LG. A randomized paired comparison trial of cutaneous treatments for acute jellyfish (Carybdea alata) stings. Am J Emerg Med. 2002;20:624–6.CrossRefPubMedGoogle Scholar
  65. O’Reilly GM, Isbister GK, Lawrie PM, Treston GT, Currie BJ. Prospective study of jellyfish stings from tropical Australia, including the major box jellyfish Chironex fleckeri. Med J Aust. 2001;175:652–5.PubMedGoogle Scholar
  66. Olson CE, Pockl EE, Calton GJ, Burnett JW. Immunochromatographic purification of a nematocyst toxin from the cnidarian Chironex fleckeri (sea wasp). Toxicon. 1984;22:733–42.CrossRefPubMedGoogle Scholar
  67. Othman I, Burnett JW. Techniques applicable for purifying Chironex fleckeri (Box-jellyfish) venom. Toxicon. 1990;28:821–35.CrossRefPubMedGoogle Scholar
  68. Özbek S, Balasubramanian PG, Holstein TW. Cnidocyst structure and the biomechanics of discharge. Toxicon. 2009;54:1038–45.CrossRefPubMedGoogle Scholar
  69. Pereira P, Seymour JE. In vitro effects on human heart and skeletal cells of the venom from two cubozoans, Chironex fleckeri and Carukia barnesi. Toxicon. 2013;76:310–5.CrossRefPubMedGoogle Scholar
  70. Pereira PL, Carrette T, Cullen P, Mulcahy RF, Little M, Seymour J. Pressure immobilisation bandages in first-aid treatment of jellyfish envenomation: current recommendations reconsidered. Med J Aust. 2000;173:650–2.PubMedGoogle Scholar
  71. Ramasamy S, Isbister GK, Seymour JE, Hodgson WC. The in vitro effects of two chirodropid (Chironex fleckeri and Chiropsalmus sp.) venoms: efficacy of box jellyfish antivenom. Toxicon. 2003;41:703–11.CrossRefPubMedGoogle Scholar
  72. Ramasamy S, Isbister GK, Seymour JE, Hodgson WC. The in vivo cardiovascular effects of box jellyfish Chironex fleckeri venom in rats: efficacy of pre-treatment with antivenom, verapamil and magnesium sulphate. Toxicon. 2004;43:685–90.CrossRefPubMedGoogle Scholar
  73. Ramasamy S, Isbister GK, Seymour JE, Hodgson WC. The in vivo cardiovascular effects of an Australian box jellyfish (Chiropsalmus sp.) venom in rats. Toxicon. 2005;45:321–7.CrossRefPubMedGoogle Scholar
  74. Rifkin J, Endean R. The structure and function of the nematocysts of Chironex fleckeri Southcott, 1956. Cell Tissue Res. 1983;233:563–77.CrossRefPubMedGoogle Scholar
  75. Seymour J, Carrette T, Cullen P, Little M, Mulcahy RF, Pereira PL. The use of pressure immobilization bandages in the first aid management of cubozoan envenomings. Toxicon. 2002;40:1503–5.CrossRefPubMedGoogle Scholar
  76. Southcott RV, Kingston CW. Lethal jellyfish stings: a study in “sea wasps”. Med J Aust. 1959;1:443–4.Google Scholar
  77. Sutherland SK, Tibballs J. Australian animal toxins. Melbourne: Oxford University Press; 2001.Google Scholar
  78. Sutherland SK, Coulter AR, Harris RD. Rationalisation of first-aid measures for elapid snakebite. Lancet. 1979;1:183–6.CrossRefPubMedGoogle Scholar
  79. Tardent P. The cnidarian cnidocyte, a high-tech cellular weaponry. BioEssays. 1995;17:351–62.CrossRefGoogle Scholar
  80. Thomas CS, Scott SA, Galanis DJ, Goto RS. Box jellyfish (Carybdea alata) in Waikiki. The analgesic effect of sting-aid, Adolph’s meat tenderizer and fresh water on their stings: a double-blinded, randomized, placebo-controlled clinical trial. Hawaii Med J. 2001a;60:205–7.PubMedGoogle Scholar
  81. Thomas CS, Scott SA, Galanis DJ, Goto RS. Box jellyfish (Carybdea alata) in Waikiki: their influx cycle plus the analgesic effect of hot and cold packs on their stings to swimmers at the beach: a randomized, placebo-controlled, clinical trial. Hawaii Med J. 2001b;60:100–7.PubMedGoogle Scholar
  82. Tibballs J, Williams D, Sutherland SK. The effects of antivenom and verapamil on the haemodynamic actions of Chironex fleckeri (Box jellyfish) venom. Anaesth Intensive Care. 1998;26:40–5.PubMedGoogle Scholar
  83. Tibballs J, Yanagihara AA, Turner HC, Winkel K. Immunological and toxinological responses to jellyfish stings. Inflamm Allergy Drug Targets. 2011;10:438–46.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Turner RJ, Freeman SE. Effects of Chironex fleckeri toxin on the isolated perfused guinea pig heart. Toxicon. 1969;7:277–86.CrossRefPubMedGoogle Scholar
  85. Wang T, Wen X-J, Mei XB, et al. Lipid peroxidation is another potential mechanism besides pore-formation underlying hemolysis of tentacle extract from the jellyfish Cyanea capillata. Mar Drugs. 2013;11:67–80.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Welfare P, Little M, Pereira P, Seymour J. An in-vitro examination of the effect of vinegar on discharged nematocysts of Chironex fleckeri. Diving & Hyperb Med. 2014;44:30–4.Google Scholar
  87. Wilcox CL, Yanagihara AA. Heated debates: Hot-water immersion or ice packs as first aid for Cnidarian envenomations. Toxins. 2016;8(4):97. Scholar
  88. Williamson JA, Callanan VI, Unwin ML, Hartwick RF. Box-jellyfish venom and humans. Med J Aust. 1984;31:4.Google Scholar
  89. Williamson JA, Fenner PJ, Burnett JW, Rifkin JF. Venomous & poisonous marine animals: a medical and biological handbook. Sydney: Surf Life Saving Australia and University of New South Wales Press; 1996.Google Scholar
  90. Wiltshire CJ, Sutherland SK, Fenner PJ, Young AR. Optimization and preliminary characterization of venom isolated from three medically important jellyfish: box jellyfish (Chironex fleckeri), Irukandji (Carukia barnesi) and blubber (Catostylus mosaicus). Wilderness Environ Med. 2000;11:241–50.CrossRefPubMedGoogle Scholar
  91. Winkel KD, Hawdon GM, Fenner PJ, Gershwin LA, Collins AG, Tibballs J. Jellyfish antivenoms: past, present, and future. J Toxicol Toxin Rev. 2003;22:115–27.CrossRefGoogle Scholar
  92. Winkel KD, Tibballs J, Molenaar P, et al. The cardiovascular actions of the venom from the Irukandji (Carukia barnesi) jellyfish: effects in human, rat and guinea pig tissues in vitro, and in pigs in vivo. Clin Exp Pharmacol Physiol. 2005;32:777–88.CrossRefPubMedGoogle Scholar
  93. Winter KL, Fernando R, Ramasamy S, Seymour JE, Isbister GK, Hodgson WC. The in vitro vascular effects of two chirodropid (Chironex fleckeri and Chiropsella bronzie) venoms. Toxicol Lett. 2007;168:13–20.CrossRefPubMedGoogle Scholar
  94. Winter KL, Isbister GK, Jacoby T, Seymour JE, Hodgson WC. An in vivo comparison of the efficacy of CSL box jellyfish antivenom with antibodies raised against nematocyst-derived Chironex fleckeri venom. Toxicol Lett. 2009;187:94–8.CrossRefPubMedGoogle Scholar
  95. Yanagihara AA, Shohet RV. Cubozoan venom-induced cardiovascular collapse is caused by hyperkalaemia and prevented by zinc gluconate in mice. PLoS One. 2012;7:e51368.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yanagihara AA, Wilcox C, King R, Hurwitz K, Castelfranco AM. Experimental assays to assess the efficacy of vinegar and other topical first-aid approaches on Cubozoan (Alatina alata) tentacle firing and venom toxicity. Toxins. 2016;8(1):19. Scholar
  97. Yoshimoto CM, Yanagihara AA. Cnidarian (coelenterate) envenomations in Hawaii improve following heat application. Trans R Soc Trop Med Hyg. 2002;96:300–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Intensive Care Unit, The Royal Children’s HospitalThe University of MelbourneMelbourneAustralia

Personalised recommendations