North American Scorpion Envenomations

Reference work entry
Part of the Toxinology book series (TOXI)

Abstract

The Arizona bark scorpion, Centruroides sculpturatus, is the only scorpion endemic to the United States that produces a systemic envenomation in humans. Most stings do not result in serious symptoms however, and children are much more likely than adults to experience life-threatening effects. Serious envenomations are classified as Grade III and Grade IV. Findings include neuromuscular hyperactivity, with myoclonic muscle movements, fasciculations, thrashing and twisting of the torso, and restless agitation. Cranial nerve findings also occur and include opsoclonus, with dysconjugate and roving eye movements, as well as tongue fasciculations, hypersalivation, incoordination of pharyngeal muscles, and stridor. Local tissue findings at the sting site do not occur. Severe bark scorpion envenomation may be managed with supportive care and airway interventions as needed. Deaths occur from respiratory failure and hypoxia. An anti-Centruroides antivenom is available for treatment of serious bark scorpion stings. The antivenom reverses clinical toxicity within about an hour of administration. With or without antivenom treatment, most patients have full recovery from the envenomation in about 24 h.

References

  1. Aksel G, Guler S, Dogan NO, Corbacioglu SK. A randomized trial comparing intravenous paracetamol, topical lidocaine, and ice application for treatment of pain associated with scorpion stings. Hum Exp Toxicol. 2015;34(6):662–7.CrossRefPubMedGoogle Scholar
  2. Boyer LV, Theodorou AA, Berg RA, Mallie J, Chavez-Mendez A, Garcia-Ubbelohde W, et al. Antivenom for critically ill children with neurotoxicity from scorpion stings. N Engl J Med. 2009;360(20):2090–8.CrossRefPubMedGoogle Scholar
  3. Boyer L, Degan J, Ruha AM, Mallie J, Mangin E, Alagon A. Safety of intravenous equine F(ab’)2: insights following clinical trials involving 1534 recipients of scorpion antivenom. Toxicon. 2013;76:386–93.CrossRefPubMedGoogle Scholar
  4. Calderon-Aranda ES, Riviere G, Choumet V, Possani LD, Bon C. Pharmacokinetics of the toxic fraction of Centruroides limpidus limpidus venom in experimentally envenomed rabbits and effects of immunotherapy with specific F(ab’)2. Toxicon. 1999;37(5):771–82.CrossRefPubMedGoogle Scholar
  5. Campos FV, Chanda B, Beirao PS, Bezanilla F. Beta-scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel. J Gen Physiol. 2007;130(3):257–68.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Campos FV, Chanda B, Beirao PS, Bezanilla F. Alpha-scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels. J Gen Physiol. 2008;132(2):251–63.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chase P, Boyer-Hassen L, McNally J, Vazquez HL, Theodorou AA, Walter FG, et al. Serum levels and urine detection of Centruroides sculpturatus venom in significantly envenomated patients. Clin Toxicol (Phila). 2009;47(1):24–8.CrossRefGoogle Scholar
  8. Coorg V, Levitan RD, Gerkin RD, Muenzer J, Ruha AM. Clinical presentation and outcomes associated with different treatment modalities for pediatric bark scorpion envenomation. J Med Toxicol. 2017;13(1):66–70.CrossRefPubMedGoogle Scholar
  9. Corzo G, Espino-Solis GP. Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells. Toxicon. 2017;127:56–62.CrossRefPubMedGoogle Scholar
  10. Curry SC, Vance MV, Ryan PJ, Kunkel DB, Northey WT. Envenomation by the scorpion Centruroides sculpturatus. J Toxicol Clin Toxicol. 1983;21(4–5):417–49.CrossRefPubMedGoogle Scholar
  11. Devaux C, Jouirou B, Naceur Krifi M, Clot-Faybesse O, El Ayeb M, Rochat H. Quantitative variability in the biodistribution and in toxinokinetic studies of the three main alpha toxins from the Androctonus australis hector scorpion venom. Toxicon. 2004;43(6):661–9.CrossRefPubMedGoogle Scholar
  12. Gibly R, Williams M, Walter FG, McNally J, Conroy C, Berg RA. Continuous intravenous midazolam infusion for Centruroides exilicauda scorpion envenomation. Ann Emerg Med. 1999;34(5):620–5.CrossRefPubMedGoogle Scholar
  13. Hiller K, Jarrod MM, Franke HA, Degan J, Boyer LV, Fox FM. Scorpion antivenom administered by alternative infusions. Ann Emerg Med. 2010;56(3):309–10.CrossRefPubMedGoogle Scholar
  14. Isbister GK, Bawaskar HS. Scorpion envenomation. N Engl J Med. 2014;371(5):457–63.CrossRefPubMedGoogle Scholar
  15. Kang AM, Brooks DE. Nationwide scorpion exposures reported to US poison control centers from 2005 to 2015. J Med Toxicol. 2017;13(2):158–65.CrossRefPubMedGoogle Scholar
  16. Kolecki P. Inadvertent methamphetamine poisoning in pediatric patients. Pediatr Emerg Care. 1998;14(6):385–7.CrossRefPubMedGoogle Scholar
  17. Krifi MN, Savin S, Debray M, Bon C, El Ayeb M, Choumet V. Pharmacokinetic studies of scorpion venom before and after antivenom immunotherapy. Toxicon. 2005;45(2):187–98.CrossRefPubMedGoogle Scholar
  18. Lutkin S. Arizona hospital’s $80,000 bill stings worse than scorpion venom: ABC news. 2012. Available from: http://abcnews.go.com/Health/arizona-hospitals-80000-bill-stings-worse-scorpion-venom/story?id=17163685. 30 Apr 2017.
  19. More D, Nugent J, Hagan L, Demain J, Schwertner H, Whisman B, et al. Identification of allergens in the venom of the common striped scorpion. Ann Allergy Asthma Immunol. 2004;93(5):493–8.CrossRefPubMedGoogle Scholar
  20. Mowry JB, Spyker DA, Cantilena LR Jr, McMillan N, Ford M. 2013 annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 31st annual report. Clin Toxicol (Phila). 2014;52(10):1032–283.CrossRefGoogle Scholar
  21. O’Connor A, Ruha AM. Clinical course of bark scorpion envenomation managed without antivenom. J Med Toxicol. 2012;8(3):258–62.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Osnaya-Romero N, Acosta-Saavedra LC, Goytia-Acevedo R, Lares-Asseff I, Basurto-Celaya G, Perez-Guille G, et al. Serum level of scorpion toxins, electrolytes and electrocardiogram alterations in Mexican children envenomed by scorpion sting. Toxicon. 2016;122:103–8.CrossRefPubMedGoogle Scholar
  23. Quintero-Hernandez V, Jimenez-Vargas JM, Gurrola GB, Valdivia HH, Possani LD. Scorpion venom components that affect ion-channels function. Toxicon. 2013;76:328–42.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Rendon-Anaya M, Delaye L, Possani LD, Herrera-Estrella A. Global transcriptome analysis of the scorpion Centruroides noxius: new toxin families and evolutionary insights from an ancestral scorpion species. PLoS One. 2012;7(8):e43331.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Santibanez-Lopez CE, Francke OF, Ureta C, Possani LD. Scorpions from Mexico: from species diversity to venom complexity. Toxins. 2015;8(1).Google Scholar
  26. Stahnke HL. The venomous effects of some Arizona scorpions. Science. 1938;88(2277):166–7.CrossRefPubMedGoogle Scholar
  27. Stahnke H. The Arizona scorpion problem. Ariz Med. 1950;7(3):23–9.Google Scholar
  28. Strommen J, Shirazi F. Methamphetamine ingestion misdiagnosed as Centruroides sculpturatus envenomation. Case Rep Emer Med. 2015;2015:320574.Google Scholar
  29. Suchard JR, Hilder R. Atropine use in Centruroides scorpion envenomation. J Toxicol Clin Toxicol. 2001;39(6):595–8; discussion 9.Google Scholar
  30. Therapeutics RD. Centruroides (scorpion) immune F(ab’)2 (equine) injection. 2011. Available from: https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-bio-gen/documents/document/ucm266725.pdf
  31. Vazquez H, Chavez-Haro A, Garcia-Ubbelohde W, Paniagua-Solis J, Alagon A, Sevcik C. Pharmacokinetics of a F(ab')2 scorpion antivenom administered intramuscularly in healthy human volunteers. Int Immunopharmacol. 2010;10(11):1318–24.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Arizona College of Medicine PhoenixPhoenixUSA

Personalised recommendations