Skip to main content

Translational Toxinology: Venom to Antivenom

  • Reference work entry
  • First Online:
Clinical Toxinology in Australia, Europe, and Americas

Part of the book series: Toxinology ((TOXI))

  • 869 Accesses

Abstract

A great natural diversity exists across animal taxa and species that produce venom, and although venoms are primarily used in the acquisition of prey and secondarily for defense, it is their adverse effects on humans that have driven scientific and medical research. The spectrum of venom-producing organisms and the venom components and toxins across organism species is highly variable. Venom components function in concert and selectively in their actions producing pathophysiological effects for subduing prey. In contrast, when non-prey species such as humans are encountered, the biting or stinging as a result of a defensive or fear response may result in envenomation. Following envenomation a myriad of venom-/toxin-induced adverse and toxicological insults to various physiological systems may result. What creatures are venomous, how they envenomate, their venom composition, how their venom components/toxins work mechanistically, and the pathophysiological effects of venom in envenomated humans led to the quest for remedies and antidotes. Prominently, among therapeutic advancements was the development of passive antisera therapy in the late1800s for cobra envenomation (Calmette 1894). Today’s formulations of snake venom immunotherapies (antivenom) are relatively unchanged with respect to general antibody structure and mechanism of action. However, recent technological advances in antibody preparation, purification, and product formulation and combined venomic and antivenomic technologies are leading to novel, refined toxin-targeted antivenoms (Calvete et al. 2009). Toxinology has been translational over time, across biological systems, across scientific disciplines, and technologically, leading to our improved understanding of venom-producing animals, venoms, and the design and development of more efficacious antivenoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarenga LM, Zahid M, di Tommaso A, Juste MO, Aubrey N, Billiad P, Muzard J. Engineering venom’s toxin-neutralizing antibody fragments and its therapeutic potential. Toxins. 2014;6:2541–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown N, Landon J. Antivenom: the most cost-effective treatment in the world? Toxicon. 2010;55:1405–7.

    Article  CAS  PubMed  Google Scholar 

  • Calmette A. Contribution a l’e’tude du venin des serpents, Immunisation des animaux et tratitment del’envenimation. Ann Inst Pasteur. 1894;8:257–75.

    Google Scholar 

  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75:44–62.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Lomonte B. A bright future for integrative venomics. Toxicon. 2015;107:159–62.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Sanz L, Angulo Y, Lamonte B, Guttierrez JM. Venoms, venomics, antivenomics. FEBS Lett. 2009;583:1736–43.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Sanz L, Perez A, Borges A, Vargas AM, Lomonte B, Angulo Y, Gutierrez JM, Chalkidis HM, Mourao RH, Furtado MF, Moura da Silva AM. Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamizonian dispersal and implications of geographic venom variability on snakebite management. J Proteomics. 2011;74(4):510–27.

    Article  CAS  PubMed  Google Scholar 

  • Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB, Chan WY. Snake venom toxins; toxicity and medicinal applications. Appl Microbiol Biotechnol. 2016;100:6165–81.

    Article  CAS  PubMed  Google Scholar 

  • Chavanayarn C, Thanongsaksrikul J, Thueng-in K, Bangphoomi K, Sookrung N, Chaicumpa W. Humanized-single domain antibodies (VH/VHH) that bound specifically to Naja kaouthia phospholipase A2 and neutralized the enzymatic activity. Toxins. 2012;4:554–67. https://doi.org/10.3390/toxins4070554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-J, Tsai C-Y, Hu W-P, Chang L-S. DNA aptamers against Taiwan banded krait alpha-bungarotoxin recognize Taiwan cobra cardiotoxin. Toxins. 2016;8:66. https://doi.org/10.3390/toxins8030066.

    Article  PubMed Central  Google Scholar 

  • Chippaux JP. Estimating the global burden of snakebite can help improve management. PLoSMed [Internet]. 2008;5(11):e221. https://doi.org/10.1371/journal/pmed.00500221.

    Google Scholar 

  • Chippaux JP. Role of antivenoms in the treatment of snake envenomation. Bull Acad Natl Med. 2013;197:993–1006.

    PubMed  Google Scholar 

  • Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29:1279–303.

    Article  CAS  PubMed  Google Scholar 

  • Cook DA, Samarasekara CL, Wagstaff SC, Kinne J, Wernery U, Harrison RA. Analysis of camelid IgG for antivenom development: immunoreactivity and preclinical neurtalisation of venom-induced pathology b IgG subclasses, and the effect of heat treatment. Toxicon. 2010a;56(4):596–603.

    Article  CAS  PubMed  Google Scholar 

  • Cook DA, Owen T, Wagstaff SC, Wernery U, Harrison PA. Analysis of camelid IgG for antivenom development: serological responses of venom-immunised camels to prepare either monospecific of polyspecific antivenoms in West Africa. Toxicon. 2010b;56(3):363–72.

    Article  CAS  PubMed  Google Scholar 

  • Delves PJ, Riott IM. The immune system. Advances in immunology. N Engl J Med. 2000;343:37–49.

    Article  CAS  PubMed  Google Scholar 

  • Diaz P, Malave C, Zerpa N, Vasquez H, D’Suze G, Montero Y, Castillo C, Alagon A, Sevcik C. IgY pharmacokinetics in rabbits: implications for IgY use as antivenoms. Toxicon. 2014;90:124–33.

    Article  CAS  PubMed  Google Scholar 

  • Doley R, Kini RM. Protein complexes in snake venom. Cell Mol Life Sci. 2009;66:2851–71.

    Article  CAS  PubMed  Google Scholar 

  • Escalante T, Rucavado A, Pinto AF, Terra RM, Gutiérrez JM, Fox JW. Wound exudate as a proteomic window to reveal different mechanisms of tissue damage by snake venom toxins. J Proteome Res. 2009;8(11):5120–31.

    Article  CAS  PubMed  Google Scholar 

  • Espino-Solis GP, Riano-Umbarlia L, Becerril B, Possani LD. Antidotes against venomous animals: state of the art and prospectives. J Proteomics. 2009;72:183–99.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases, and phosphodiesterases. Toxicon. 2013;62:75–82.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Richards ES, Cousin X, Jackson TNW, Weise C, Sunagar K. Lesser-known or putative reptile toxins. In: Fry BG, editor. Venomous reptiles and their toxins. Oxford: Oxford University Press; 2015.

    Google Scholar 

  • Gutiérrez JM. Improving antivenom availability and accessibility: science, technology, and beyond. Toxicon. 2012;60:676–87.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM. Understanding and confronting snakebite envenoming: the harvest of cooperation. Toxicon. 2016;109:51–62.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, León L, Lomonte B. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet. 2003;42(8):721–41.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, León L, Lomonte B, Angula Y. Antivenoms for snakebite envenoming. Inflamm Allergy Drug Targets. 2011;10(5):369–80.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, Solano G, Pla D, Herrera M, Segura A, Villata M, Vargas M, Sanz L Lomonte B, Calvete, Leon G. Assessing the preclinical efficacy of antivenoms: from the lethality neutralization assay to antivenomics. Toxicon. 2013;69:168–179.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, Lomonte B, Sanz L, Calvete JJ, Pla D. Immunological profile of antivenoms: preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assay. J Proteomics. 2014a;105:340–50.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, Burnouf T, Harrison RA, Calvete JJ, Kuch U, WArrell DA, Williams DJ. A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. Bull World Health Organ. 2014b;92:526–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey AL, Bradley KN, Cochran SA, Rowan EG, Pratt JA, Quilfeldt JA, Jerusalinsky DA. What can toxins tell us about drug discovery? Toxicon. 1998;36:163–1640.

    Article  Google Scholar 

  • Herrera M, Leon G, Segura A, Meneses F, Lomonte B, Chippaux JP, Gutierrez JM. Factors associated with adverse reactions induced by caprylic acid-fractionated whole IgG preparations: comparison between horse, sheep, and camel IgGs. Toxicon. 2005;46:775–81.

    Article  CAS  PubMed  Google Scholar 

  • Herrera M, Solano D, Gómez A, Villalta M, Vargas M, Sánchez A, Gutiérrez JM, León G. Physiochemical characterization of commercial freeze-dried snake antivenoms. Toxicon. 2017;126:32–7.

    Article  CAS  PubMed  Google Scholar 

  • Hmila I, Cosyns B, Tounsi H, Roosens B, Caveliers V, Abderrazek RB, Boubaker S, Muyldermans S, El Ayeb M, Bouhaouala-Zahar B, Lahoutte T. Pre-clinical studies of toxin-specific nanobodies: evidence of in vivo efficacy to prevent fatal disturbances by scorpion envenoming. Toxicol Appl Pharmacol. 2012;264:222–31.

    Article  CAS  PubMed  Google Scholar 

  • Ho M, Kamolrat S, White NJ, Karbwang J, Looareesuwan S, Phillips RE, Warrell DA. Pharmacokinetics of three commercial antivenoms in patients envenomed by the Malayan pit viper, Calloselasma rhodostoma, in Thailand. Am J Trop Med Hyg. 1990;42(3):260–6.

    Article  CAS  PubMed  Google Scholar 

  • Isbister GK, Brown SG, Investigators ASP. Bite in Australian snake handlers – Australian snakebite project (ASP). QJM. 2012;105(11):1089–95.

    Article  PubMed  Google Scholar 

  • Ismail M, Abd-Elsalam MA, Al-Ahaidib MS. Pharmacokinetics of 125I-labelled Walterinnesia aegyptia venom and its specific antivenins: flash absorption and distribution of the venom and its toxin versus slow absorption and distribution of IgG, F(ab′)2, and F(ab) of the antivenin. Toxicon. 1998;36:93–114.

    Article  CAS  PubMed  Google Scholar 

  • Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. Estimating the global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218. https://doi.org/10.1371/journal.pmed.0050218.

    Article  PubMed  PubMed Central  Google Scholar 

  • León G, Sanchez L, Hernandez A, Villalta M, Herrera M, Segura M, Estrada R, Gutiérrez JM. Immune response towards snake venoms. Inflamm Allergy Drug Targets. 2011;10(5):381–98.

    Article  PubMed  Google Scholar 

  • Liu GL, Wang JQ, Bu DP, Cheng JB, Zhang CG, Wei HY, Zhou LY, Liu KL, Dong XL. Specific immune milk production of cows implanted with antigen-release devices. J Dairy Sci. 2009;92:100–8.

    Article  CAS  PubMed  Google Scholar 

  • Mackessy SP. The field of reptile toxinology. Snake, lizards, and their venoms In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton: CRC Press; 2009, p. 3–23.

    Google Scholar 

  • Meddeb-Mouelhi F, Bouhaouala-Zahar B, Benlasfar Z, Hammadi M, Mejri T, Moslah M, Karoui H, Khorchani T, El Ayeb M. Immunized camel sera and derived immunoglobulin subclasses neutralizing Androctonous australis hector scorpion toxins. Toxicon. 2003;42(7):785–91.

    Article  CAS  PubMed  Google Scholar 

  • Meier J, Stocker KF. Biology and distribution of venomous snakes of medical importance and the composition of snake venoms. In: Meier J, White J, editors. Handbook of clinical toxicology of animal venoms and poisons. Boca Raton: CRC Press; 1995. p. 367–412.

    Google Scholar 

  • Park CY, Jung SH, Lee SS, Rhee DK. Comparison of the rabbit pyrogen test and Limulus ameobocyte lysate (LAL) assay for endotoxin in hepatitis B vaccines and the effect of aluminum hydroxide. Biologicals. 2005;33(3):145–51.

    Article  CAS  PubMed  Google Scholar 

  • Ritner RK. Medicine. In: Redford DB, editor. The Oxford encyclopedia of ancient Egypt. Oxford: Oxford University Press; 2001. p. 355.

    Google Scholar 

  • Schiermeier Q. Africa braced for snakebite crisis. Nature. 2015;525:299.

    Article  CAS  PubMed  Google Scholar 

  • Seifert SA, Boyer LV. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann Emerg Med. 2001;37:189–95.

    Article  CAS  PubMed  Google Scholar 

  • Sevcik C, Diaz P, D’Suze G. On the presence of antibodies against bovine, equine and poultry immunoglobulins in human IgG preparations, and its implication on antivenom production. Toxicon. 2008;51:10–6.

    Article  CAS  PubMed  Google Scholar 

  • Sintiprungrat K, Chaisurvia P, Watcharatanyatip K, Ratanabanangkoon K. Immunoaffinity chromatography in antivenomic studies: various parameters that can effect the results. Toxicon. 2016;119:129–39.

    Article  CAS  PubMed  Google Scholar 

  • Stone SF, Isbister GK, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam A, Jacovy-Alner TE, Cotterell CL, Brown SG. Immune response to snake envenoming and treatment with antivenom: complement activation, cytokine production and mast cell degranulation. PLoS Negl Trop Dis. 2013;7:e2326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theakston RDG, Warrell DA, Griffiths E. Report of a WHO workshop on the standardization and control of antivenoms. Toxicon. 2003;41:541–57.

    Article  CAS  PubMed  Google Scholar 

  • Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids. 2011;40:15–28.

    Article  CAS  PubMed  Google Scholar 

  • Warr GW, Magor KE, Higgins DA. IgY: clues to the origins of modern antibodies. Immunol Today. 1995;16(8):392–8.

    Article  CAS  PubMed  Google Scholar 

  • Warrell DA. Geographical and intraspecies variation in the clinical manifestations of envenoming by snakes. In: Thorpe RS, Wuster W, Malhorta A, editors. Venomous snakes, ecology, evolution, and snakebite. Oxford: Clarendon Press; 1997. p. 189–204.

    Google Scholar 

  • Warrell DA. Snakebite. Lancet. 2010;375(9708):77–88.

    Article  PubMed  Google Scholar 

  • World Health Organization. WHO guidelines for the production, control, and regulation of snake antivenom immunoglobulins. Geneva: World Health Organization; 2010.

    Google Scholar 

  • Yap MKK, Tan NH, Sim SM, Fung SY, Tan CH. Pharmacokinetics of Naja Sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. PLoSMed [Internet]. 2014;8(6):e2890. https://doi.org/10.1371/journal.pntd.0002890.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Keyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Keyler, D.E. (2018). Translational Toxinology: Venom to Antivenom. In: Vogel, CW., Seifert, S., Tambourgi, D. (eds) Clinical Toxinology in Australia, Europe, and Americas. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7438-3_72

Download citation

Publish with us

Policies and ethics