Spider Envenomation in Australia

  • James Tibballs
Reference work entry
Part of the Toxinology book series (TOXI)


Known species of spiders number tens of thousands worldwide, grouped into over a hundred families and nearly 4000 genera. Millions of toxins are estimated to exist in their venoms but only a very small fraction, several hundred, has been identified and characterized. Protein toxins of lethal potential to humans are present in venoms of Australian genera in the family Hexathelidae (Atrax and Hadronyche, Funnel-web spiders), in the family Actinopodidae (Missulena, Mouse spiders), and the one species of the family Theridiidae (Latrodectus hasselti, Red-back spider). The principal toxins in Atrax and Hadronyche venoms and probably in Missulena venom are δ-hexatoxins (42-residue peptides) which slow the inactivation of voltage-gated sodium channels, cause repetitive action potentials in neural tissue, and subsequent uncontrolled release of neurotransmitters with characteristic clinical syndromes of envenomation. An effective antivenom is available. These toxins have a characteristic internal cystine knot motif conferred by disulfide bonds. Other small peptides in funnel-web spider venoms, ω-hexatoxins, target insect voltage-gated calcium channels while ҡ-hexatoxins target insect calcium-activated potassium channels. The principal toxin in Latrodectus venom is a 1180-residue protein (α-latrotoxin), which forms a tetramer on nerve ending membranes creating pores for the ingress of calcium and subsequent exocytosis of synaptic vesicles and release of transmitters. Internal calcium stores are also released. Envenomation causes a universally recognized constellation of symptoms and signs, “latrodectism” which is effectively treated with antivenom. The syndrome also results from envenomation by Steatoda carpensis (a Cupboard spider), another of the Theridiidea family.


Spiders Hexathelidae Atrax Hadronyche Latrodectus Latrodectism Antivenom 


  1. Bohlen CJ, Priel A, Zhou S, King D, Siemens J, Julius D. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell. 2010;141:834–45.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bosmans F, Swartz KJ. Targeting voltage sensors in sodium channels with spider toxins. Trends Pharmacol Sci. 2010;31:175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brown MR, Sheumack DD, Tyler MI, Howden MEH. Amino acid sequence of versutoxin, a lethal neurotoxin from the venom of the funnel-web spider Atrax versutus. Biochem J. 1988;250:401–5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Browne GJ. Near fatal envenomation from the funnel-web spider in an infant. Ped Emerg Care. 1997;13:271–3.CrossRefGoogle Scholar
  5. Cardoso FC, Dekan Z, Rosengren J, et al. Identification and characterization of ProTx-III [μ-TRTX-Tp1a], a new voltage-gated sodium channel inhibitor from venom of the tarantula Thrixopelma pruriens. Mol Pharmacol. 2015;88:291–303.CrossRefPubMedGoogle Scholar
  6. Chassagnon IR, McCarthy CA, Chin YK-Y, et al. Potent neuroprotection after stroke afforded by double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc Nat Acad Sci. 2017;114:3750–5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chong Y, Hayes JL, Sollod B, et al. The ω-atracotoxins: selective blockers of insect M-LVA and HVA calcium channels. Biochem Pharmacol. 2007;74:623–38.CrossRefPubMedGoogle Scholar
  8. Coddington JA, Levi HW. Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst. 1991;22:565–92.CrossRefGoogle Scholar
  9. Dieckmann J, Prebble J, McDonogh A, Sara A, Fisher M. Efficacy of funnel-web spider antivenom in human envenomation by Hadronyche species. Med J Aust. 1989;151:706–7.PubMedGoogle Scholar
  10. Duncan AW, Tibballs J, Sutherland SK. Effects of funnel-web spider envenomation in monkeys, and their clinical implications. Med J Aust. 1980;2:429–35.PubMedGoogle Scholar
  11. Fisher MM, Carr GA, McGuinness R, Warden JC. Atrax robustus envenomation. Anaesth Intensive Care. 1980;8:410–20.PubMedGoogle Scholar
  12. Fisher MMD, Raftos J, McGuinness RT, et al. Funnel-web spider (Atrax robustus) antivenom. Early clinical experience. Med J Aust. 1981;2:525–6.PubMedGoogle Scholar
  13. Fletcher JI, Smith R, O’Donoghue SI, et al. The structure of a novel insecticidal neurotoxin, ω-atracotoxin-Hv1, from the venom of an Australian funnel web spider. Nat Struct Biol. 1997;4:559–66.CrossRefPubMedGoogle Scholar
  14. Graudins A, Wilson D, Alewood PF, Broady KW, Nicholson GM. Cross-reactivity of Sydney funnel-web spider antivenom: neutralization of the in vitro toxicity of other Australian funnel-web (Atrax and Hadronyche) spider venoms. Toxicon. 2002;40:259–66.CrossRefPubMedGoogle Scholar
  15. Graudins A, Little MJ, Pineda SS, et al. Cloning and activity of a novel α-latrotoxin from red-back spider venom. Biochem Pharmacol. 2012;83:170–83.CrossRefPubMedGoogle Scholar
  16. Gray MRA. Revision of the Australian funnel-web spiders (Hexathelidae: Atracinae). Rec Aust Mus. 2010;62:285–392. Scholar
  17. Gunning SJ, Chong Y, Khailfe AA, Hains PG, Broady KW, Nicholson GM. Isolation of delta-missulenatoxin-Mb1a, the major vertebrate-active spider delta-toxin from the venom of Missulena bradleyi (Actinopodidae). FEBS Lett. 2003;554:211–8.CrossRefPubMedGoogle Scholar
  18. Gunning SJ, Maggio F, Windley MJ, Valenzuela SM, King GF, Nicholson GM. The Janus-faced atracotoxins are specific blockers of invertebrate K(Ca) channels. FEBS J. 2008;275:4045–59.CrossRefPubMedGoogle Scholar
  19. Haney RA, Ayoub NA, Clarke TH, Hayashi CY, Garb JE. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomes and venom proteomics. BMC Genomics. 2014;15:366.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hardy MC, Daly NL, Mobli M, Morales RAV, King GF. Isolation of an orally active insecticidal toxin from the venom of an Australian tarantula. PLoS One. 2013;8:e73136.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Harrington AP, Raven RJ, Bowe PC, Hawdon GM, Winkel KD. Funnel-web spider (Hadronyche infensa) envenomations in coastal south-east Queensland. Med J Aust. 1999;171:651–3.PubMedGoogle Scholar
  22. He Q, Duan Z, Yu Y, Liu Z, Liu Z, Liang S. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS One. 2013;8:e81357.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hernandez-Campuzano B, Suarez R, Lina L, et al. Expression of a spider venom peptide in a transgenic tobacco confers insect resistance. Toxicon. 2009;53:122–8.CrossRefPubMedGoogle Scholar
  24. Herzig V, Hodgson WC. Neurotoxic and insecticidal properties of venom from the Australian theraphosid spider Selentholus foelschei. Neurotoxicology. 2008;29:471–5.CrossRefPubMedGoogle Scholar
  25. Herzig V, King GF. The cystine knot is responsible for the exceptional stability of the insecticidal spider toxin ω-Hexatoxin-Hv1a. Toxins. 2015;7:4366–80. Scholar
  26. Herzig V, Khailfe AA, Chong Y, et al. Intersexual variations in northern (Missulena pruinosa) and eastern (M. bradleyi) mouse spider venom. Toxicon. 2008;51:1167–77.CrossRefPubMedGoogle Scholar
  27. Isbister GK, Gray MR. A prospective study of 750 definite spider bites, with expert spider identification. Q J Med. 2002;95:723–31.CrossRefGoogle Scholar
  28. Isbister GK, Gray MR, Balit CR, et al. Funnel-web spider bite: a systematic review of recorded clinical cases. Med J Aust. 2005;182:407–11.PubMedGoogle Scholar
  29. Isbister GK, Sellors KV, Beckmann U, Chiew AL, Downes MA, Berling I. Catecholamine-induced cardiomyopathy resulting from life-threatening funnel-web spider envenoming. Med J Aust. 2015;203:302–4.CrossRefPubMedGoogle Scholar
  30. King GF. Modulation of insect Cav channels by peptidic spider toxins. Toxicon. 2007;49:513–30.CrossRefPubMedGoogle Scholar
  31. King GF. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther. 2011;11:1469–84.CrossRefPubMedGoogle Scholar
  32. King GF, Escoubas P, Nicholson GM. Peptide toxins that selectively target insect Nav and Cav channels. Channels. 2008;2:100–16.CrossRefPubMedGoogle Scholar
  33. Klint JK, Senff S, Rupasinghe DB, et al. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads. Toxicon. 2012;60:478–91.CrossRefPubMedGoogle Scholar
  34. Knight J, Sutton L. Successful treatment of Atrax formidabilis envenomation. Med J Aust. 1982;2:434–5.PubMedGoogle Scholar
  35. Little MJ, Wilson H, Zappia C, et al. δ-Atracotoxins from Australian funnel-web spiders compete with scorpion α-toxin binding on both rat brain and insect sodium channels. FEBS Lett. 1998;439:246–52.CrossRefPubMedGoogle Scholar
  36. Luch A. Mechanistic insights on spider neurotoxins. Mol Clin Environ Toxicol. 2010;100:293–315.CrossRefGoogle Scholar
  37. Miller MK, Whyte IM, Dawson AH. Serum sickness from funnel-web spider antivenom. Med J Aust. 1999;171:54.PubMedGoogle Scholar
  38. Miller MK, Whyte IM, White J, Keir PM. Clinical features and management of Hadronyche envenomation in man. Toxicon. 2000;38:409–27.CrossRefPubMedGoogle Scholar
  39. Miller M, O’Leary MA, Isbister GK. Towards rationalisation of antivenom use in funnel-web spider envenoming: enzyme immunoassays for venom concentrations. Clin Toxicol. 2016;54:245–51. Scholar
  40. Nicholson GM. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon. 2007;49:490–512.CrossRefPubMedGoogle Scholar
  41. Nicholson GM, Little MJ. Spider neurotoxins targeting voltage-gated sodium channels. Toxin Rev. 2005;24:315–45.CrossRefGoogle Scholar
  42. Nicholson GM, Willow M, Howden MEH, Narahashi T. Modification of sodium channel gating and kinetics by versutoxin from the Australian funnel-web spider Hadronyche versuta. Pflugers Arch Eur J Physiol. 1994;428:400–9.CrossRefGoogle Scholar
  43. Nicholson GM, Little MJ, Tyler M, Narahashi T. Selective alteration of sodium channels by Australian funnel-web spider toxins. Toxicon. 1996;34:1443–53.CrossRefPubMedGoogle Scholar
  44. Nicholson GM, Walsh R, Little MJ, Tyler MI. Characterisation of the effects of robustoxin, the lethal neurotoxin from the Sydney funnel-web spider Atrax robustus, on sodium channel activation and inactivation. Pflügers Arch Eur J Physiol. 1998;436:117–26.CrossRefGoogle Scholar
  45. Nicholson GM, Little MJ, Birinyi-Strachan LC. Structure and function of δ-atracotoxins: lethal neurotoxins targeting the voltage-gated sodium channel. Toxicon. 2004;43:587–99.CrossRefPubMedGoogle Scholar
  46. Nicholson GM, Graudins A, Wilson HI, Little M, Broady KW. Arachnid toxinology in Australia: from clinical toxicology to potential applications. Toxicon. 2006;48:872–98.CrossRefPubMedGoogle Scholar
  47. Norton RS, Pallaghy PK. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon. 1998;36:1573–83.CrossRefPubMedGoogle Scholar
  48. Oldrati V, Koua D, Allard P-M, et al. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS One. 2017;12:e0172966.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Palagi A, Koh JM, Leblanc M, et al. Unravelling the complex venom landscape of lethal Australian funnel-web spiders (Hexathelidae: atracinae) using LC-MALDI-TOF mass spectrometry. J Proteome. 2013;80:292–310.CrossRefGoogle Scholar
  50. Pallaghy PK, Alewood D, Alewood PF, Norton RS. Solution structure of robustoxin, the lethal neurotoxin from the funnel-web spider Atrax robustus. FEBS Lett. 1997;419:191–6.CrossRefPubMedGoogle Scholar
  51. Pineda SS, Wilson D, Mattick JS, King GF. The lethal toxin from Australian funnel-web spiders is encoded by an intronless gene. PLoS One. 2012;7:e43699.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pineda SS, Sollod BL, Wilson D, et al. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders. BMC Genomics. 2014;15:177. Scholar
  53. Platnick NI. The World Spider Catalog, version 15.2014.
  54. Premawardhena AP, de Silva CE, Fonseka MMD, Gunatilake SB, de Silva HJ. Low dose subcutaneous adrenaline to prevent acute adverse reactions to antivenom serum in people bitten by snakes: randomised, placebo controlled trial. BMJ. 1999;57:1041–3.CrossRefGoogle Scholar
  55. Rash LD, Birinyi-Strachan LC, Nicholson GM, Hodgson WC. Neurotoxic activity of venom from the Australian eastern mouse spider (Missulena bradleyi) involves modulation of sodium channel gating. Brit J Pharmacol. 2000;130:1817–24.CrossRefGoogle Scholar
  56. Rendle-Short H. Mouse spider envenomation. Proceedings of the Australian and New Zealand Intensive Care Society Scientific Meeting. 1985. P. 25. ANZICS.Google Scholar
  57. Rohou A, Nield J, Ushkaryov YA. Insecticidal toxins from black widow spider venom. Toxicon. 2007;49:531–49.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sheumack DD, Classens R, Whiteley NM, Howden MEH. Complete amino acid sequence of a new type of lethal neurotoxin from the venom of the funnel-web spider Atrax robustus. FEBS Lett. 1985;181:154–6.CrossRefPubMedGoogle Scholar
  59. Siemens J, Zhou S, Piskorowski R, et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature. 2006;444:208–12.CrossRefPubMedGoogle Scholar
  60. Sutherland SK. The Sydney funnel-web spider (Atrax robustus). A review of some clinical records of human envenomation. Med J Aust. 1972;2:643–6.Google Scholar
  61. Sutherland SK. Clinical and experimental aspects of arachnid poisoning in Australia. In: Chubb IW, Geffen LB, editors. Neurotoxins, fundamental and clinical advances. Adelaide: Adelaide University Union Press; 1979.Google Scholar
  62. Sutherland SK, Duncan AW. New first-aid measures for envenomation: with special reference to bites by the Sydney funnel-web spider Atrax robustus. Med J Aust. 1980;1:378–9.PubMedGoogle Scholar
  63. Sutherland SK, Tibballs J. Australian animal toxins. 2nd ed. Melbourne: Oxford University Press; 2001.Google Scholar
  64. Sutherland SK, Trinca JC. Survey of 2144 cases of red-back spider bites, Australia and New Zealand 1963–1976. Med J Aust. 1978;2:620–3.PubMedGoogle Scholar
  65. Sutherland SK, Coulter AR, Harris RD. Rationalisation of first-aid measures for elapid snakebite. Lancet. 1979;1:183–6.CrossRefPubMedGoogle Scholar
  66. Szeto TH, Birinyi-Strachan LC, Smith R, et al. Isolation and pharmacological characterisation of δ–atracotoxin-Hv1b, a vertebrate-selective sodium channel toxin. FEBS Lett. 2000;470:293–9.CrossRefPubMedGoogle Scholar
  67. Tedford HW, Fletcher JI, King GF. Functional significance of the β-hairpin in the insecticidal neurotoxin ω-Atracotoxin-Hv1a. J Biol Chem. 2001;276:26568–76.CrossRefPubMedGoogle Scholar
  68. Tedford HW, Gilles N, Menez A, Doering CJ, Zamponi GW, King GF. Scanning mutagenesis of ω-atracotoxin-Hv1a reveals a spatially restricted epitope that confers selective activity against insect calcium channels. J Biol Chem. 2004;279:44133–40.CrossRefPubMedGoogle Scholar
  69. Ushkaryov YA, Volynski KE, Ashton AC. The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon. 2004;43:527–42.CrossRefPubMedGoogle Scholar
  70. Wang XH, Connor M, Smith R, et al. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulphide bridge. Nat Struct Biol. 2000;7:505–13.CrossRefPubMedGoogle Scholar
  71. Wang XH, Connor M, Wilson D, et al. Discovery and structure of a potent and highly specific blocker of insect calcium channels. J Biol Chem. 2001;276:40306–12.CrossRefPubMedGoogle Scholar
  72. Wilson D, Alewood PF. Taxonomy of Australian funnel-web spiders using rp-HPLC/ESI-MS profiling techniques. Toxicon. 2006;47:614–27.CrossRefPubMedGoogle Scholar
  73. Yamaji N, Little MJ, Nishio H, et al. Synthesis, solution structure, and phylum selectivity of a spider delta-toxin that slows inactivation of specific voltage-gated sodium channel subtypes. J Biol Chem. 2009;284:24568–82.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Intensive Care Unit, The Royal Children’s HospitalThe University of MelbourneMelbourneAustralia

Personalised recommendations