Encyclopedia of Lipidomics

Living Edition
| Editors: Markus R. Wenk

Potential of Comprehensive Two-Dimensional Gas Chromatography for the Analysis of Lipids

  • Flavio A. Franchina
  • Mariosimone Zoccali
  • Peter Q. Tranchida
  • Luigi Mondello
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-7864-1_70-1

Introduction

The field of lipid analysis is an extremely important area of research in food chemistry; such importance is related to the fundamental biological functions of lipids such as structural components of cell membranes, energy storage compounds, signaling molecules, etc. From a human nutritional viewpoint, oils and fats provide not only energy but also essential fatty acids, polyunsaturated fatty acids (PUFAs), sterols, and vitamins. Additionally, lipids play a crucial role in human health; in fact, a number of disease states are related to an excessive or unbalanced lipid consumption (Christie and Han 2012).

The lipid class comprises a broad range of structures, predominantly nonpolar and hydrophobic, even if some constituents present a polar or hydrophilic character, giving them amphiphilic properties. A general classification of lipid scan can be made according to their chemical behavior into saponifiable and unsaponifiable fractions:
  • The saponifiables contain at least one...

Keywords

Ionic Liquid Peak Capacity Unsaponifiable Fraction Cryogenic Modulation Lemon Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

References

  1. Adahchour M, Jover E, Beens J, Vreuls RJJ, Brinkman UAT. Twin comprehensive two-dimensional gas chromatographic system: concept and applications. J Chromatogr A. 2005;1086:128–34.CrossRefPubMedGoogle Scholar
  2. Adam F, Bertoncini F, Coupard V, Charon N, Thiébaut D, Espinat D, Hennion M-C. Using comprehensive two-dimensional gas chromatography for the analysis of oxygenates in middle distillates. I. Determination of the nature of biodiesels blend in diesel fuel. J Chromatogr A. 2008;1186:236–44.CrossRefPubMedGoogle Scholar
  3. Belitz HD, Grosch W. Food chemistry. Springer-Verlag, Berlin Heidelberg; 1999.Google Scholar
  4. Biedermann M, Hasse-Aschoff P, Grob K. Wax ester fraction of edible oils: analysis by on-line LC-GC-MS and GC × GC-FID. Eur J Lipid Sci Technol. 2008;110:1084–94.CrossRefGoogle Scholar
  5. Bogusz Jr S, Hantao LW, Braga SCGN, França VCRM, da Costa MF, Hamer RD, Ventura DF, Augusto F. Solid-phase microextraction combined with comprehensive two-dimensional gas chromatography for fatty acid profiling of cell wall phospholipids. J Sep Sci. 2012;35:2438–44.CrossRefPubMedGoogle Scholar
  6. Bruno K, Ettre LS. Static headspace-gas chromatography. Wiley-VCH, New York; 1997.Google Scholar
  7. Chin S-T, Che Man YB, Tan CP, Hashim DM. Rapid profiling of animal-derived fatty acids using fast GC × GC coupled to time-of-flight mass spectrometry. J Am Oil Chem Soc. 2009;86:949–58.CrossRefGoogle Scholar
  8. Christie W.W., Han X. Lipid Analysis: isolation, separation, identification and lipidomic analysis (4th edition). Oily Press, Bridgwater; 2010.Google Scholar
  9. David F, Tienpont B, Sandra P. Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode. J Sep Sci. 2008;31:3395–403.CrossRefPubMedGoogle Scholar
  10. de Geus H-J, Aidos I, de Boer J, Luten JB, Brinkman UAT. Characterisation of fatty acids in biological oil samples using comprehensive multidimensional gas chromatography. J Chromatogr A. 2001;910:95–103.CrossRefPubMedGoogle Scholar
  11. de Koning S, Janssen H-G, Brinkman A. Characterization of triacylglycerides from edible oils and fats using a single and multidimensional techniques. LC-GC Eur. 2006;19:590–600.Google Scholar
  12. de Koning S, Kaal E, Janssen HG, van Platerink C, Brinkman UAT. Characterization of olive oil volatiles by multi-step direct thermal desorption–comprehensive gas chromatography–time-of-flight mass spectrometry using a programmed temperature vaporizing injector. J Chromatogr A. 2008;1186:228–35.CrossRefPubMedGoogle Scholar
  13. Delmonte P, Fardin-Kia AR, Rader JI. Separation of fatty acid methyl esters by GC-online hydrogenation × GC. Anal Chem. 2013;85:1517–24.CrossRefPubMedGoogle Scholar
  14. Gu Q, David F, Lynen F, Rumpel K, Xu G, De Vos P, Sandra P. Analysis of bacteria fatty acids by flow modulated comprehensive two-dimensional gas chromatography with parallel flame ionization detector/mass spectrometry. J Chromatogr A. 2010;1217:4448–53.CrossRefPubMedGoogle Scholar
  15. Harynuk J, Vlaeminck B, Zaher P, Marriott PJ. Projection of multidimensional GC data into alternative dimensions-exploiting sample dimensionality and structured retention patterns. Anal Bioanal Chem. 2006;386:602–13.CrossRefPubMedGoogle Scholar
  16. Hejazi L, Ebrahimi D, Guilhaus M, Hibbert DB. Determination of the composition of fatty acid mixtures using GC × FI-MS: a comprehensive two-dimensional separation approach. Anal Chem. 2009;81:1450–8.CrossRefPubMedGoogle Scholar
  17. Hyötyläinen T, Kallio M, Lehtonen M, Lintonene S, Peräjoki P, Jussila M, Riekkola M-L. Comprehensive two-dimensional gas chromatography in the analysis of dietary fatty acids. J Sep Sci. 2004;27:459–67.CrossRefPubMedGoogle Scholar
  18. Indrasti D, Che Man YB, Chin ST, Mustafa S, Mat Hashim D, Abdul MM. Regiospecific analysis of mono- and diglycerides in glycerolysis products by GC × GC-TOF-MS. J Am Oil Chem Soc. 2010;87:1255–62.CrossRefGoogle Scholar
  19. Jover E, Adahchour M, Bayona JM, Vreuls RJJ, Brinkman UAT. Characterization of lipids in complex samples using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr A. 2005;1086:2–11.CrossRefPubMedGoogle Scholar
  20. Lankinen M, Schwab U, Laakso TS, Mattila I, Juntunen K, Mykkänen H, Poutanen K, Gylling H, Oresšič M. Metabolomic analysis of plasma metabolites that may mediate effects of Rye Bread on satiety and weight maintenance in postmenopausal women. J Nutr. 2011;141:31–6.CrossRefPubMedGoogle Scholar
  21. Lucci P, Pacetti D, Boselli E, Frega NG. Comprehensive multidimensional gas chromatography in the analysis of food lipids. Prog Nutr. 2009;11:143–8.Google Scholar
  22. Manzano P, Arnáiz E, Diego JC, Toribio L, García-Viguera C, Bernal JL, Bernal J. Comprehensive two-dimensional gas chromatography with capillary flow modulation to separate FAME isomers. J Chromatogr A. 2011;1218:4952–9.CrossRefPubMedGoogle Scholar
  23. Menéndez-Carreño M, Steenbergen H, Janssen HG. Development and validation of a comprehensive two-dimensional gas chromatography–mass spectrometry method for the analysis of phytosterol oxidation products in human plasma. Anal Bioanal Chem. 2012;402:2023–32.CrossRefPubMedGoogle Scholar
  24. Mitrevski BS, Brenna JT, Zhang Y, Marriott PJ. A new paradigm in drugs analysis: comprehensive two-dimensional gas chromatography for steroid analysis. Chem Aust. 2007;74:3–5.Google Scholar
  25. Mitrevski BS, Brenna JT, Zhang Y, Marriott PJ. Application of comprehensive two-dimensional gas chromatography to sterols analysis. J Chromatogr A. 2008;1214:134–42.CrossRefPubMedGoogle Scholar
  26. Mitrevski BS, Wilairat P, Marriott PJ. Comprehensive two-dimensional gas chromatography improves separation and identification of anabolic agents in doping control. J Chromatogr A. 2010;1217:127–35.CrossRefPubMedGoogle Scholar
  27. Mondello L. Comprehensive chromatography in combination with mass spectrometry. John Wiley & Sons, Inc., Hoboken, New Jersey; 2011.Google Scholar
  28. Mondello L, Casilli A, Tranchida PQ, Dugo P, Dugo G. Detailed analysis and group-type separation of natural fats and oils using comprehensive two-dimensional gas chromatography. J Chromatogr A. 2003;1019:187–96.CrossRefPubMedGoogle Scholar
  29. Mondello L, Tranchida PQ, Dugo P, Dugo G. Rapid, micro-scale preparation and very fast gas chromatographic separation of cod liver oil fatty acid methyl ester. J Pharm Biomed Anal. 2006;41:1566–70.CrossRefPubMedGoogle Scholar
  30. Nolvachai Y, Kulsing C, Marriott PJ. Thermally sensitive behavior explanation for unusual orthogonality observed in comprehensive two-dimensional gas chromatography comprising a single ionic liquid stationary phase. Anal Chem. 2015;87:538–44.CrossRefPubMedGoogle Scholar
  31. Nosheen A, Mitrevski B, Bano A, Marriott PJ. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns. J Chromatogr A. 2013;1312:118–23.CrossRefPubMedGoogle Scholar
  32. Payeur AL, Lorenz MA, Kennedy RT. Analysis of fatty acid composition in insulin secreting cells by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr B. 2012;893–894:187–92.CrossRefGoogle Scholar
  33. Peacock EE, Arey JS, DeMello JA, McNichol AP, Nelson RK, Reddy CM. Molecular and isotopic analysis of motor oil from a biodiesel-driven vehicle. Energy Fuels. 2010;24:1037–42.CrossRefGoogle Scholar
  34. Peres F, Jelén HH, Majcher MM, Arraias M, Martins LL, Ferreira-Dias S. Characterization of aroma compounds in Portuguese extra virgin olive oils from Galega Vulgar and Cobrançosa cultivars using GC–O and GC × GC–ToFMS. Food Res Int. 2013;54:1979–86.CrossRefGoogle Scholar
  35. Purcaro G, Tranchida PQ, Dugo P, La Camera E, Bisignano G, Conte L, Mondello L. Characterization of bacterial lipid profiles by using rapid sample. J Sep Sci. 2010;33:2334–40.CrossRefPubMedGoogle Scholar
  36. Purcaro G, Cordero C, Liberto E, Bicchi C, Conte LS. Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. J Chromatogr A. 2014;1334:101–11.CrossRefPubMedGoogle Scholar
  37. Purcaro G, Barp L, Beccaria M, Conte LS. Fingerprinting of vegetable oil minor components by multidimensional comprehensive gas chromatography with dual detection. Anal Bioanal Chem. 2015;407:309–19.CrossRefPubMedGoogle Scholar
  38. Salivo S, Beccaria M, Sullini G, Tranchida PQ, Dugo P, Mondello L. Analysis of human plasma lipids by using comprehensive two-dimensional gas chromatography with dual detection and with the support of high-resolution time-of-flight mass spectrometry for structural elucidation. J Sep Sci. 2015;38:267–75.CrossRefPubMedGoogle Scholar
  39. Seeley JV, Seeley SK. Multidimensional gas chromatography: fundamental advances and new applications. Anal Chem. 2013;85:557–78.CrossRefPubMedGoogle Scholar
  40. Silva AIH, Pereira MG, Casilli A, Conceicao FC, Aquino Neto FR. Analytical challenges in doping control: comprehensive two-dimensional gas chromatography with time of flight mass spectrometry, a promising option. J Chromatogr A. 2009;1216:2913.CrossRefPubMedGoogle Scholar
  41. Stepan R, Cuhra P, Barsova S. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection for the determination of anabolic steroids and related compounds in nutritional supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25:557–65.CrossRefPubMedGoogle Scholar
  42. Tedone L, Costa R, De Grazia S, Ragusa S, Mondello L. Monodimensional (GC–FID and GC–MS) and comprehensive two-dimensional gas chromatography for the assessment of volatiles and fatty acids from Ruta chalepensis aerial parts. Phytochem Anal. 2014;25:468–75.CrossRefPubMedGoogle Scholar
  43. Tiyapongpattana W, Wilairat P, Marriott PJ. Characterization of biodiesel and biodiesel blends using comprehensive two-dimensional gas chromatography. J Sep Sci. 2008;31:2640–9.CrossRefPubMedGoogle Scholar
  44. Tobias HJ, Sacks GL, Zhang Y, Brenna JT. Comprehensive two-dimensional gas chromatography combustion isotope ratio mass spectrometry. Anal Chem. 2008;80:8613–21.CrossRefPubMedGoogle Scholar
  45. Torres Vaz-Freire L, da Silva MDR G, Costa Freitas AM. Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in olive oils produced by two different techniques in Portuguese olive varieties Galega Vulgar, Cobrançosae Carrasquenha. Anal Chim Acta. 2009;633:263–70.CrossRefPubMedGoogle Scholar
  46. Tranchida PQ, Casilli A, Dugo P, Dugo G, Mondello L. Generation of improved gas linear velocities in a comprehensive two-dimensional gas chromatography system. Anal Chem. 2007;79:2266–75.CrossRefPubMedGoogle Scholar
  47. Tranchida PQ, Costa R, Donato P, Sciarrone D, Ragonese D, Dugo P, Dugo G, Mondello L. Acquisition of deeper knowledge on the human plasma fatty acid profile exploiting comprehensive 2-D GC. J Sep Sci. 2008a;31:3347–51.CrossRefPubMedGoogle Scholar
  48. Tranchida PQ, Giannino A, Mondello M, Sciarrone D, Dugo P, Dugo G, Mondello M. Elucidation of fatty acid profiles in vegetable oils exploiting group-type patterning and enhanced sensitivity of comprehensive two-dimensional gas chromatography. J Sep Sci. 2008b;31:1797–802.CrossRefPubMedGoogle Scholar
  49. Tranchida PQ, Franchina FA, Dugo P, Mondello L. A flow-modulated comprehensive gas chromatography–mass spectrometry method for the analysis of fatty acid profiles in marine and biological samples. J Chromatogr A. 2012;1255:171–6.CrossRefPubMedGoogle Scholar
  50. Tranchida PQ, Salivo S, Bonaccorsi I, Rotondo A, Dugo P, Mondello L. Analysis of the unsaponifiable fraction of lipids belonging to various milk-types by using comprehensive two-dimensional gas chromatography with dual mass spectrometry/flame ionization detection and with the support of high resolution time-of-flight mass spectrometry for structural elucidation. J Chromatogr A. 2013a;1313:194–201.CrossRefPubMedGoogle Scholar
  51. Tranchida PQ, Salivo S, Franchina FA, Bonaccorsi I, Dugo P, Mondello L. Qualitative and quantitative analysis of the unsaponifiable fraction of vegetable oils by using comprehensive 2D GC with dual MS/FID detection. Anal Bioanal Chem. 2013b;405:4655–63.CrossRefPubMedGoogle Scholar
  52. Tranchida PQ, Franchina FA, Dugo P, Mondello L. Flow-modulation low-pressure comprehensive two-dimensional gas chromatography. J Chromatogr A. 2014a;1372:236–44.CrossRefGoogle Scholar
  53. Tranchida PQ, Franchina FA, Salivo S, Russo M, Dugo P, Mondello L. Flow-modulated comprehensive 2D gas chromatography-triple quadrupole MS elucidation of the fatty acids and unsaponifiable constituents of oil derived from lemon seeds, a food-industry waste product. LCGC North Am. 2014b;32:24–9.Google Scholar
  54. Truong TT, Marriott PJ, Porter NA, Leeming R. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection for the trace analysis of flavour compounds in food. J Chromatogr A. 2003;1019:197–210.CrossRefPubMedGoogle Scholar
  55. Villegas C, Zhao Y, Curtis JM. Two methods for the separation of monounsaturated octadecenoic acid isomers. J Chromatogr A. 2010;1217:775–84.CrossRefPubMedGoogle Scholar
  56. Vlaeminck B, Harynuk J, Fievez V, Marriott P. Comprehensive two-dimensional gas chromatography for the separation of fatty acids in milk. Eur J Lipid Sci Technol. 2007;109:757–66.CrossRefGoogle Scholar
  57. Western RJ, Lau SSG, Marriott PJ, Nichols PD. Positional and geometrical isomer separation of FAME by comprehensive 2-d GC. Lipids. 2002;37:1–10.CrossRefGoogle Scholar
  58. Zeng AX, Chin ST, Patti A, Marriott PJ. Profiling of soil fatty acids using comprehensive two-dimensional gas chromatography with mass spectrometry detection. J Chromatogr A. 2013;1317:239–45.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Flavio A. Franchina
    • 1
    • 3
  • Mariosimone Zoccali
    • 1
    • 3
  • Peter Q. Tranchida
    • 1
  • Luigi Mondello
    • 1
    • 2
    • 3
  1. 1.Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversity of MessinaMessinaItaly
  2. 2.Università Campus Bio-Medico of RomeRomeItaly
  3. 3.Chromaleont s.r.l., c/o University of MessinaMessinaItaly