Encyclopedia of Lipidomics

Living Edition
| Editors: Markus R. Wenk

Thin-Layer Chromatography/Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry of Lipids

  • Beate Fuchs
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-7864-1_60-1



Liquid chromatography (especially high-performance liquid chromatography (HPLC)) and planar chromatography (in particular thin-layer (TLC) or more recent high-performance thin-layer chromatography (HPTLC)) are indispensable tools of modern analytical chemistry (Hahn-Deinstrop 2006).

TLC is a very common separation technique in organic chemistry and natural product chemistry, for instance, lipid chemistry where normally only small sample amounts are available. Although TLC is quite a simple and inexpensive method, it offers some important advantages in comparison to HPLC (Hahn-Deinstrop 2006; Fuchs et al. 2009a):
  1. 1.

    TLC is a very robust separation technique and is affected to a much lesser extent than HPLC by impurities that are potentially present in crude lipid extracts.

  2. 2.

    TLC uses always a completely new stationary phase. Therefore, there are no “memory” effects in contrast to HPLC. HPLC columns are much more expensive and are, thus,...


Lipid Species MALDI Mass Spectrum MALDI Mass Spectrometric Fatty Acyl Residue Crude Lipid Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Batubara A, Carolan VA, Loadman PM, Sutton C, Shnyder SD, Clench MR. Thin-layer chromatography/matrix-assisted laser desorption/ionisation mass spectrometry and matrix-assisted laser desorption/ionisation mass spectrometry imaging for the analysis of phospholipids in LS174T colorectal adenocarcinoma xenografts treated with the vascular disrupting agent DMXAA.Rapid Commun Mass Spectrom. 2015;29:1288–96.CrossRefPubMedGoogle Scholar
  2. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods. 2007;4:828–33.CrossRefPubMedGoogle Scholar
  3. Dreisewerd K, Müthing J, Rohlfing A, Meisen I, Vukelić Z, Peter-Katalinić J, Hillenkamp F, Berkenkamp S. Analysis of gangliosides directly from thin-layer chromatography plates by infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry with a glycerol matrix. Anal Chem. 2005;77:4098–107.CrossRefPubMedGoogle Scholar
  4. Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic. 2008;7:355–70.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Estrada R, Yappert MC. Alternative approaches for the detection of various phospholipid classes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom. 2004;39:412–22.CrossRefPubMedGoogle Scholar
  6. Fuchs B, Schiller J. Application of MALDI-TOF mass spectrometry in lipidomics. Eur J Lipid Sci Technol. 2009;111:83–98.CrossRefGoogle Scholar
  7. Fuchs B, Schiller J, Süss R, Schürenberg M, Suckau D. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem. 2007;389:827–34.CrossRefPubMedGoogle Scholar
  8. Fuchs B, Schiller J, Süss R, Zscharnack M, Bader A, Müller P, Schürenberg M, Becker M, Suckau D. Analysis of stem cell lipids by offline HPTLC-MALDI-TOF MS. Anal Bioanal Chem. 2008;392:849–60.CrossRefPubMedGoogle Scholar
  9. Fuchs B, Süß R, Nimptsch A, Schiller J. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) directly combined with thin-layer chromatography (TLC) – a review of the current state. Chromatographia. 2009a;69:95–105.CrossRefGoogle Scholar
  10. Fuchs B, Schiller J, Süß R, Nimptsch A, Schürenberg A, Suckau D. Capabilities and disadvantages of combined matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and high-performance thin-layer chromatography (HPTLC): analysis of egg yolk lipids. JPC J Planar Chromatogr. 2009b;22:35–42.CrossRefGoogle Scholar
  11. Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 2010;49:450–75.CrossRefPubMedGoogle Scholar
  12. Fuchs B, Süß R, Teuber K, Eibisch M, Schiller J. Lipid analysis by thin-layer chromatography – a review of the current state. J Chromatogr A. 2011;1218:2754–74.CrossRefPubMedGoogle Scholar
  13. Gellermann GP, Appel TR, Davies P, Diekmann S. Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids. Biol Chem. 2006;387:1267–74.CrossRefPubMedGoogle Scholar
  14. Griesinger H, Fuchs B, Süß R, Matheis K, Schulz M, Schiller J. Stationary phase thickness determines the quality of thin-layer chromatography/matrix-assisted laser desorption and ionization mass spectra of lipids. Anal Biochem. 2014;451:45–7.CrossRefPubMedGoogle Scholar
  15. Guerrera IC, Astarita G, Jais JP, Sands D, Nowakowska A, Colas J, Sermet-Gaudelus I, Schuerenberg M, Piomelli D, Edelman A, Ollero M. A novel lipidomic strategy reveals plasma phospholipid signatures associated with respiratory disease severity in cystic fibrosis patients. PLoS ONE. 2009;4, e7735.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guilhaus M, Selby D, Mlynski V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev. 2000;19:65–107.CrossRefPubMedGoogle Scholar
  17. Guittard J, Hronowski XL, Costello CE. Direct matrix-assisted laser desorption/ionization mass spectrometric analysis of glycosphingolipids on thin layer chromatographic plates and transfer membranes. Rapid Commun Mass Spectrom. 1999;13:1838–49.CrossRefPubMedGoogle Scholar
  18. Hahn-Deinstrop E. Applied thin-layer chromatography - best practice and avoidance of mistakes. 2nd ed. Weinheim: Wiley-VCH; 2006.CrossRefGoogle Scholar
  19. Hillenkamp F, Peter-Katalinić J. MALDI MS – a practical guide to instrumentation, methods and application. 1st ed. Weinheim: Wiley-VCH; 2007.Google Scholar
  20. Hillenkamp F, Unsöld E, Kaufmann R, Nitsche R. Laser microprobe mass analysis of organic materials. Nature. 1975;256:119–20.CrossRefPubMedGoogle Scholar
  21. Ivleva VB, Sapp LM, O’Connor PB, Costello CE. Ganglioside analysis by thin-layer chromatography matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry. J Am Soc Mass Spectrom. 2005;16:1552–60.CrossRefPubMedGoogle Scholar
  22. Luftmann H, Aranda M, Morlock GE. Automated interface for hyphenation of planar chromatography with mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:3772–6.CrossRefPubMedGoogle Scholar
  23. Meisen I, Mormann M, Müthing J. Thin-layer chromatography, overlay technique and mass spectrometry: a versatile triad advancing glycosphingolipidomics. Biochim Biophys Acta. 2011;1811:875–96.CrossRefPubMedGoogle Scholar
  24. Miao Z, Chen H. Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J Am Soc Mass Spectrom. 2009;20:10–9.CrossRefPubMedGoogle Scholar
  25. Morlock G, Sherma J. New and improved liquid chromatographic methods for food analysis. J AOAC Int. 2009;92:689–90.PubMedGoogle Scholar
  26. Nakamura K, Suzuki Y, Goto-Inoue N, Yoshida-Noro C, Suzuki A. Structural characterization of neutral glycosphingolipids by thin-layer chromatography coupled to matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight MS/MS. Anal Chem. 2006;78:5736–43.CrossRefPubMedGoogle Scholar
  27. Peterson DS. Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom Rev. 2007;26:19–34.CrossRefPubMedGoogle Scholar
  28. Petković M, Schiller J, Müller M, Benard S, Reichl S, Arnold K, Arnhold J. Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: phosphatidylcholine prevents the detection of further species. Anal Biochem. 2001;289:202–16.CrossRefPubMedGoogle Scholar
  29. Rohlfing A, Müthing J, Pohlentz G, Distler U, Peter-Katalinić J, Berkenkamp S, Dreisewerd K. IR-MALDI-MS analysis of HPTLC-separated phospholipid mixtures directly from the TLC plate. Anal Chem. 2007;79:5793–808.CrossRefPubMedGoogle Scholar
  30. Ruh H, Sandhoff R, Meyer B, Gretz N, Hopf C. Quantitative characterization of tissue globotetraosylceramides in a rat model of polycystic kidney disease by PrimaDrop sample preparation and indirect high-performance thin layer chromatography-matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry with automated data acquisition. Anal Chem. 2013;85:6233–40.CrossRefPubMedGoogle Scholar
  31. Schiller J, Süss R, Fuchs B, Müller M, Petković M, Zschörnig O, Waschipky H. The suitability of different DHB isomers as matrices for the MALDI-TOF MS analysis of phospholipids: which isomer for what purpose? Eur Biophys J. 2007;36:517–27.CrossRefPubMedGoogle Scholar
  32. Sherma J, Morlock G. Chronology of thin-layer chromatography focusing on instrumental progress. JPC: J Planar Chromatogr. 2008;21:471–7.Google Scholar
  33. Souady J, Soltwisch J, Dreisewerd K, Haier J, Peter-Katalinić J, Müthing J. Structural profiling of individual glycosphingolipids in a single thin-layer chromatogram by multiple sequential immunodetection matched with Direct IR-MALDI-o-TOF mass spectrometry. Anal Chem. 2009;81:9481–92.CrossRefPubMedGoogle Scholar
  34. Stübiger G, Belgacem O. Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem. 2007;79:3206–13.CrossRefPubMedGoogle Scholar
  35. Stübiger G, Pittenauer E, Belgacem O, Rehulka P, Widhalm K, Allmaier G. Analysis of human plasma lipids and soybean lecithin by means of high-performance thin-layer chromatography and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:2711–23.CrossRefPubMedGoogle Scholar
  36. Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal Chem. 2008;80:7576–85.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Teuber K, Riemer T, Schiller J. Thin-layer chromatography combined with MALDI-TOF-MS and 31P-NMR to study possible selective bindings of phospholipids to silica gel. Anal Bioanal Chem. 2010;398:2833–42.CrossRefPubMedGoogle Scholar
  38. Urban PL, Amantonico A, Zenobi R. Lab-on-a-plate: extending the functionality of MALDI-MS and LDI-MS targets. Mass Spectrom Rev. 2011;30:435–78.CrossRefPubMedGoogle Scholar
  39. Wang Y, Krull IS, Liu C, Orr JD. Derivatization of phospholipids. J Chromatogr B. 2003;793:3–14.CrossRefGoogle Scholar
  40. White T, Bursten S, Federighi D, Lewis RA, Nudelman E. High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multi-one-dimensional thin-layer chromatography. Anal Biochem. 1998;258:109–17.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of Leipzig, Medical Department, Institute of Medical Physics & BiophysicsLeipzigGermany