Skip to main content

Diacylglycerol in Plants: Functional Diversity of

  • Living reference work entry
  • First Online:
Encyclopedia of Lipidomics

Synonyms

Lipid droplets; Lipid bodies; Oleosomes; Oil bodies

Definition

Acylglycerols (glycerides) – esters of glycerol and fatty acids. Depending on how many of the three hydroxyl functional groups of glycerol are esterified, monoglycerides monoacylglycerols (monoglycerides), diacylglycerols (diglycerides), or triacylglycerols (triglycerides) can be formed.

Structure, Synthesis, and Occurrence

Diacylglycerol (DAG), termed also as diglyceride is an acylglycerol composed of a glycerol backbone where two of three hydroxy groups are esterified with fatty acid (FA) chains. Depending on which hydroxyl group of glycerol is esterified DAG can exist in three stereochemical forms: sn-1,2-diacylglycerol and sn-2,3-diacylglycerol (termed also α,β-diacylglycerols) as well as sn-1,3-diacylglycerol (termed also α,α’-diacylglycerol) (Fig. 1). In most plant species, DAG is present at low abundance, when compared to triacylglycerols (TAG) (Table 1).

Fig. 1
figure 1

Structure of stereochemical forms of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DAG:

Diacylglycerol

DAGK:

DAG kinases

DGAT:

Acyl-CoA/diacylglycerol acyltransferase

DGDG:

Digalactosyldiacylglycerol

GPAT:

Acyl-CoA/glycerol-3-phosphate acyltransferase

LPAAT:

Acyl-CoA/lysophosphatidic acid acyltransferase

MAG:

Monoacylglycerol

MGAT:

Acyl-CoA/monoacylglycerol acyltransferase

MGDG:

Monogalactosyldiacylglycerol

PA:

Phosphatidic acid

PAP:

Phosphatidic acid phosphatase

PC:

Phosphatidylcholine

PDAT:

Acyl-CoA/phospholipid acyltransferase

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PI(4,5)P2 :

Phosphatidylinositol-4,5-bisphosphate

PI4P:

Phosphatidylinositol 4-phosphate;

PI-PLC:

Phosphoinositide-specific phospholipase C

PLC:

Phospholipase C

PLD:

Phospholipase D

PS:

Phosphatidylserine

SQDG:

Sulfoquinovosylglycerol

TAG:

Triacylglycerol

References

  • Bates PD, Browse J. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci. 2012;3:147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates PD, Durrett TP, Ohlrogge JB, Pollard M. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol. 2009;150:55–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benning C. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol. 2009;25:71–91.

    Article  CAS  PubMed  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R. Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II Biochemical characterization. J Biol Chem. 1983;258:13281–6.

    CAS  PubMed  Google Scholar 

  • Browse J, Warwick N, Somerville CR, Slack CR. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem J. 1986;235:25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Lv H, Xia G, Wang M. Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav. 2012;7:472–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilmann I, Ischebeck T. Male functions and malfunctions: the impact of phosphoinositides on pollen development and pollen tube growth. Plant Reprod. 2016;29:3–20.

    Article  CAS  PubMed  Google Scholar 

  • Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer GF. Martinec J The phosphatidylcholine-hydrolyzing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot. 2011;62:3753–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munnik T. PI-PLC: phosphoinositide-phospholipase C in plant signaling. In: Wang X, editor. Phospholipases in plant signaling. Berlin: Springer; 2013. p. 27–54.

    Google Scholar 

  • Munnik T, Testerink C. Plant phospholipid signaling: “in a nutshell”. J Lipid Res. 2009;50(Suppl):260–5.

    Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem. 2005;280:7469–76.

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Vanhercke T, Shrestha P, El Tahchy A, White A, Zhou XR, Liu Q, Mansour MP, Nichols PD, Singh SP. Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway. PLoS One. 2012;7(4):e35214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I. Role of phospholipid signalling in plant environmental responses. Environ Exp Bot. 2015;114:129–43.

    Article  CAS  Google Scholar 

  • Slack CR, Bertaud WS, Shaw BD, Holland R, Browse J, Wright H. Some studies on the composition and surface properties of oil bodies from the seed cotyledons of safflower (Carthamus tinctorius) and linseed (Linum ustatissimum). Biochem J. 1980;190:551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis JG, Browse J. Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res. 2002;41:254–78.

    Article  CAS  PubMed  Google Scholar 

  • Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GFE. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signalling in Arabidopsis thaliana. Mol Plant. 2010;3:610–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Zienkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Zienkiewicz, K., Ischebeck, T. (2017). Diacylglycerol in Plants: Functional Diversity of. In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_139-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_139-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7864-1

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics