Skip to main content

Lipid Composition of Chlamydomonas reinhardtii

  • Living reference work entry
  • First Online:
  • 386 Accesses

Synonyms

Ipid droplet, Lipid bodies, Oil bodies triacylglycerols, Triacylglycerides, Triglycerides

Definitions

Oleaginous alga:

Alga with a potential to produce more than 20% of neutral lipids per dry weight

Lipid droplets:

Organelles surrounded by a phospholipid monolayer and composed of a core of neutral lipids. Thus, lipid droplets serve as a lipid storage organelle within the cell.

Chlamydomonas reinhardtii is a freshwater unicellular green alga from the family Chlamydomonadaceae, predominantly inhabiting soil. Furthermore, it is characterized by two anterior flagella, multiple mitochondria and one chloroplast (Merchant et al. 2007). Among all microalgae, it is the best characterized alga and a large variety of genetic tools are available, i.e., stable transformation with different selection markers is possible (Scranton et al. 2015; Liu and Benning 2013; Li-Beisson and Peltier 2013; Li-Beisson et al. 2015). Moreover, Chlamydomonas possesses a sexual cycle (Li-Beisson and Peltier 2013...

This is a preview of subscription content, log in via an institution.

Abbreviations

DGDG:

Digalactosyldiacylglycerol

DGTS:

Diacylglycerol-N,N,N-trimethylhomoserine

MGDG:

Monogalactosyldiacylglycerol

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

SQDG:

Sulfoquinovosyldiacylglycerol

TAG:

Triacylglycerol

References

  • Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol. 2009;3(1):1.

    Article  Google Scholar 

  • Fan J, Andre C, Xu C. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett. 2011;585(12):1985–91.

    Article  CAS  PubMed  Google Scholar 

  • Giroud C, Gerber A, Eichenberger W. Lipids of Chlamydomonas reinhardtii. Analysis of molecular species and intracellular site (s) of biosynthesis. Plant Cell Physiol. 1988;29(4):587–95.

    CAS  Google Scholar 

  • Guschina IA, Harwood JL. Algal lipids and their metabolism. In: Algae for biofuels and energy. Dordrecht: Springer; 2013. p. 17–36.

    Chapter  Google Scholar 

  • Haines TH. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res. 2001;40(4):299–324.

    Article  CAS  PubMed  Google Scholar 

  • Kong JN, Hardin K, Dinkins M, Wang G, He Q, Mujadzic T, et al. Regulation of Chlamydomonas flagella and ependymal cell motile cilia by ceramide-mediated translocation of GSK3. Mol Biol Cell. 2015;26(24):4451–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Légeret B, Schulz-Raffelt M, Nguyen HM, Auroy P, Beisson F, Peltier G, et al. Lipidomic and transcriptomic analyses of Chlamydomonas reinhardtii under heat stress unveil a direct route for the conversion of membrane lipids into storage lipids. Plant Cell Environ. 2016;39(4):834–47.

    Article  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng. 2010;107(2):258–68.

    Article  CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Peltier G. Third-generation biofuels: current and future research on microalgal lipid biotechnology. OCL. 2013;20(6):D606.

    Article  Google Scholar 

  • Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J. 2015;82(3):504–22.

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Benning C. Lipid metabolism in microalgae distinguishes itself. Cur Op Biotechnol. 2013;24(2):300–9.

    Article  CAS  Google Scholar 

  • Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB. Plant sphingolipids: Function follows form. Curr Opin Plant Biol. 2013;16(3):350–7.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Creuzburg D, Merkel P. Sterols of freshwater microalgae: potential implications for zooplankton nutrition. J Plankton Res. 2016;38:865–77.

    Article  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science. 2007;318(5848):245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J. TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Cur Opin Biotechnol. 2012;23(3):352–63.

    Article  CAS  Google Scholar 

  • Nguyen HM, Cuiné S, Beyly-Adriano A, Légeret B, Billon E, Auroy P, et al. The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol. 2013;163(2):914–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41(1):66–97.

    Article  PubMed  Google Scholar 

  • Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996;274(5285):255.

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J-D. The three genomes of Chlamydomonas. In: Discoveries in Photosynthesis. Dordrecht: Springer; 2005. p. 1047–55.

    Chapter  Google Scholar 

  • Salimova E, Boschetti A, Eichenberger W, Lutova L. Sterol mutants of Chlamydomonas reinhardtii: characterisation of three strains deficient in C24 (28) reductase. Plant Physiol Biochem. 1999;37(4):241–9.

    Article  CAS  Google Scholar 

  • Scranton MA, Ostrand JT, Fields FJ, Mayfield SP. Chlamydomonas as a model for biofuels and bio-products production. Plant J. 2015;82(3):523–31.

    Article  CAS  PubMed  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011;11(1):7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trémolières A. Glycerolipids: composition, biosynthesis and function in Chlamydomonas. In: The molecular biology of chloroplasts and mitochondria in chlamydomonas. Dordrecht: Springer; 1998. p. 415–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Popko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media B.V.

About this entry

Cite this entry

Popko, J. (2016). Lipid Composition of Chlamydomonas reinhardtii . In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_126-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_126-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7864-1

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics