Skip to main content

Lipid Composition of Arabidopsis thaliana Seeds

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Lipidomics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACP:

Acyl carrier protein

ASG:

Acylated sterol glucoside

Cer:

Ceramide

CoA:

Coenzyme A

DAG:

Diacylglycerol

DGAT:

Acyl-CoA/diacylglycerol acyltransferase

DGDG:

Digalactosyldiacylglycerol

DHA:

Docosahexaenoic acid (22:6Δ4,7,10,13,16,19)

EPA:

Eicosapentaenoic acid (20:5Δ5,8,11,14,17)

ER:

Endoplasmic reticulum

FA:

Fatty acid

FAD:

Fatty acid desaturase

FAE:

Fatty acid elongase

GC-FID:

Gas chromatography coupled to a flame-ionization detector

GIPC:

Glycosylinositolphosphoceramide

GlcCers:

Glucosylceramide

hCer:

Hydroxyl ceramide

MALDI-MS:

Matrix-assisted laser desorption/ionization-mass spectrometry

MGDG:

Monogalactosyldiacylglycerol

NAE:

N-Acylethanolamide

NAPE:

N-Acylphosphatidylethanolamine

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PDAT:

Phospholipid/diacylglycerol acyltransferase

PDCT:

Phosphatidylcholine/diacylglycerol cholinephosphotransferase

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PS:

Phosphatidylserine

SE:

Sterol ester

SG:

Sterol glucoside

TAG:

Triacylglycerol

TLC:

Thin-layer chromatography

UPLC-ESI-MS/MS:

Ultra performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry

References

  • Belide S, Petrie JR, Shrestha P, Singh SP. Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Front Plant Sci. 2012;3:168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blancaflor EB, Kilaru A, Keereetaweep J, Khan BR, Faure L, Chapman KD. N-Acylethanolamines: lipid metabolites with functions in plant growth and development. Plant J. 2014;79(4):568–83.

    Article  CAS  PubMed  Google Scholar 

  • Browse J, Somerville C. Glycerolipids. Cold Spring Harb Monogr Ser. 1994;27:881.

    CAS  Google Scholar 

  • Bryant FM, Munoz-Azcarate O, Kelly AA, Beaudoin F, Kurup S, Eastmond PJ. ACYL-ACYL CARRIER PROTEIN DESATURASE2 and 3 are responsible for making omega-7 fatty acids in the Arabidopsis Aleurone. Plant Physiol. 2016;172(1):154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chia TYP, Pike MJ, Rawsthorne S. Storage oil breakdown during embryo development of Brassica napus (L.). J Exp Bot. 2005;56(415):1285–96.

    Article  CAS  PubMed  Google Scholar 

  • De Giorgi J, Piskurewicz U, Loubery S, Utz-Pugin A, Bailly C, Mène-Saffrané L, et al. An endosperm-associated cuticle is required for Arabidopsis seed viability, dormancy and early control of germination. PLoS Genet. 2015;11(12):e1005708.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jeannotte R, et al. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a PHOSPHOLIPASE D[alpha]1 knockout mutant. Phytochemistry. 2006;67(17):1907–24.

    Article  CAS  PubMed  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 2008;54(4):593–607.

    Article  CAS  PubMed  Google Scholar 

  • Eastmond PJ. SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds. Plant Cell. 2006;18(3):665–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastmond PJ, Astley HM, Parsley K, Aubry S, Williams BP, Menard GN, et al. Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment. Nat Commun. 2015;6:6659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrand D. Production of unusual fatty acids in plants. The American Oil Chemists’ Society. http://lipidlibrary.aocs.org/Biochemistry/content.cfm?ItemNumber=40317

  • Iven T, Hornung E, Heilmann M, Feussner I. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil. Plant Biotechnol J. 2016;14(1):252–9.

    Article  CAS  PubMed  Google Scholar 

  • Kelly AA, Quettier A-L, Shaw E, Eastmond PJ. Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol. 2011;157(2):866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol J. 2013;11(3):355–61.

    Article  CAS  PubMed  Google Scholar 

  • Kermode, Allison R (2011) Plant Storage Products (Carbohydrates, Oils and Proteins). In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net. https://doi.org/10.1002/9780470015902.a0001325.pub2.

  • Kilaru A, Chapman KD. N-Acylated phospholipid metabolism and seedling growth: insights from lipidomics studies in Arabidopsis. Plant Signal Behav. 2012;7(9):1200–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopischke M, Westphal L, Schneeberger K, Clark R, Ossowski S, Wewer V, et al. Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans. Plant J. 2013;73(3):456–68.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Beisson F, Pollard M, Ohlrogge J. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry. 2006;67(9):904–15.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Baughman E, Roth MR, Han X, Welti R, Wang X. Quantitative profiling and pattern analysis of triacylglycerol species in Arabidopsis seeds by electrospray ionization mass spectrometry. Plant J. 2014;77(1):160–72.

    Article  CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, et al. Acyl-lipid metabolism. The Arabidopsis Book: The American Society of Plant Biologists; 2013. p. e0161.

    Google Scholar 

  • Menard GN, Moreno JM, Bryant FM, Munoz-Azcarate O, Kelly AA, Hassani-Pak K, et al. Genome wide analysis of fatty acid desaturation and its response to temperature. Plant Physiol. 2017;173(3):1594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina I, Bonaventure G, Ohlrogge J, Pollard M. The lipid polyester composition of Arabidopsis thaliana and Brassica napus seeds. Phytochemistry. 2006;67(23):2597–610.

    Article  CAS  PubMed  Google Scholar 

  • Napier JA, Haslam RP, Beaudoin F, Cahoon EB. Understanding and manipulating plant lipid composition: metabolic engineering leads the way. Curr Opin Plant Biol. 2014;19:68–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrick K, Shiva S, Arpin J, Delimont N, Isaac G, Tamura P, et al. Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Lipids. 2012;47(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  • Sturtevant D, Dueñas ME, Lee Y-J, Chapman KD. Three-dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: a spatial perspective of molecular heterogeneity. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(2):268–81.

    Article  CAS  Google Scholar 

  • Tellier F, Maia-Grondard A, Schmitz-Afonso I, Faure J-D. Comparative plant sphingolipidomic reveals specific lipids in seeds and oil. Phytochemistry. 2014;103(0):50–8.

    Article  CAS  PubMed  Google Scholar 

  • Troncoso-Ponce MA, Barthole G, Tremblais G, To A, Miquel M, Lepiniec L, et al. Transcriptional activation of two Delta-9 Palmitoyl-ACP desaturase genes by MYB115 and MYB118 is critical for biosynthesis of omega-7 monounsaturated fatty acids in the endosperm of Arabidopsis seeds. Plant Cell. 2016;28(10):2666–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usher S, Han L, Haslam RP, Michaelson LV, Sturtevant D, Aziz M, et al. Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa. Sci Rep. 2017;7(1):6570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, et al. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell. 2006;18(1):212–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Erp H, Kelly AA, Menard G, Eastmond PJ. Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol. 2014;165(1):30–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishwanath SJ, Kosma DK, Pulsifer IP, Scandola S, Pascal S, Joubè J, et al. Suberin-associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties. Plant Physiol. 2013;163(3):1118–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Fan J, Taylor DC, Ohlrogge JB. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell. 2009;21(12):3885–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J. 1999;19(6):645–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie A. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kelly, A.A. (2018). Lipid Composition of Arabidopsis thaliana Seeds. In: Wenk, M. (eds) Encyclopedia of Lipidomics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7864-1_124-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7864-1_124-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7864-1

  • Online ISBN: 978-94-007-7864-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics