Abstract
Diabetes mellitus is associated with an increased risk of fracture. However, in patients with diabetes the bone mineral density does not explain this. Bone turnover markers give information on bone formation and bone resorption and may explain the decreased bone material competence in patients with diabetes. Diabetes mellitus is characterized by the lack of a fasting condition, which also may affect the general bone turnover and be reflected in the bone turnover markers. This chapter focuses on the relation between bone turnover markers and plasma glucose, and bone turnover markers in diabetes subjects. In clinical trials, an oral glucose tolerance test (OGTT) decreased bone resorption markers in both patients with type 2 diabetes and healthy individuals. During an OGTT, bone formation markers were decreased in healthy individuals, but the markers were not investigated in patients with diabetes. An intravenous glucose tolerance test decreases the bone resorption marker C-terminal cross-linked telopeptide of type-I collagen (CTX) but not as much as the OGTT. Therefore a gastrointestinal interaction may affect the relation between glucose and bone turnover markers. In patients with diabetes, both CTX and the bone formation marker osteocalcin were decreased compared to controls. However, heterogeneity was present in the markers, which may be due to differences in glycemic status. In vitro studies show direct effects of glucose on the bone cells: osteoblasts, osteoclasts, and osteocytes. Hyperglycemia had detrimental effects on osteoblasts and osteoclasts and increased the sclerostin production in osteocytes; thus both bone resorption and formation seemed to decrease during hyperglycemia. However, in the mild hyperglycemia with a glucose level of 11–15 mmol/l, the osteoblasts increased the mineralization. Thus, hyperglycemia may hypermineralize the bone, so the bone mineral density is increased relatively to the bone material competence due to a relative decrease in non-mineralized matrix, e.g., collagen.
Further, investigations are needed to determine if the glucose bone turnover marker interaction may be a prognostic marker of fracture in patients with diabetes.
Similar content being viewed by others
Abbreviations
- BAP:
-
Bone-specific alkaline phosphatase
- BMD:
-
Bone mineral density
- BSP:
-
Bone sialoprotein
- CA/P:
-
Calcium/phosphate
- CTX:
-
C-terminal cross-linked telopeptide of type-I collagen
- FGF-23:
-
Fibroblast growth factor-23
- FRAX:
-
The fracture risk assessment tool
- GIP:
-
Gastric inhibitory peptide
- GLP-1:
-
Glucagon-like peptide-1
- GLP-2:
-
Glucagon-like peptide-2
- HbA1c:
-
Glycated hemoglobin A1c
- hMSC:
-
Human mesenchymal stem cells
- hMSC-TERT:
-
Human mesenchymal stem cells telomerase-immortalized
- IGF-1:
-
Insulin-like growth factor-1
- IVGTT:
-
Intravenous glucose tolerance test
- NTX:
-
N-terminal cross-linked telopeptide of type-I collagen
- OGTT:
-
Oral glucose tolerance test
- OPG:
-
Osteoprotegerin
- P1NP:
-
Procollagen type 1 N-terminal propeptide
- PTH:
-
Parathyroid hormone
- RANK:
-
Receptor activator of nuclear factor kappa-B
- RANKL:
-
Receptor Activator of Nuclear factor Kappa beta Ligand
- Runx2:
-
Runt-related protein 2
- TRAP:
-
Tartrate resistant acid phosphatase
References
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35 Suppl 1:S64–71.
Balint E, Szabo P, Marshall CF, Sprague SM. Glucose-induced inhibition of in vitro bone mineralization. Bone. 2001;28(1):21–8.
Bartolome A, Lopez-Herradon A, Portal-Nunez S, Garcia-Aguilar A, Esbrit P, Benito M, Guillen C. Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J. 2013;455(3):329–37.
Bjarnason NH, Henriksen EE, Alexandersen P, Christgau S, Henriksen DB, Christiansen C. Mechanism of circadian variation in bone resorption. Bone. 2002;30(1):307–13.
Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL. Risk of fracture in women with type 2 diabetes: the Women's Health Initiative Observational Study. J Clin Endocrinol Metab. 2006;91(9):3404–10.
Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2013;2:447.
Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99(2):411–24.
Bowsher RR, Sailstad JM. Insights in the application of research-grade diagnostic kits for biomarker assessments in support of clinical drug development: bioanalysis of circulating concentrations of soluble receptor activator of nuclear factor kappaB ligand. J Pharm Biomed Anal. 2008;48(5):1282–9.
Chailurkit LO, Chanprasertyothin S, Rajatanavin R, Ongphiphadhanakul B. Reduced attenuation of bone resorption after oral glucose in type 2 diabetes. Clin Endocrinol (Oxf). 2008;68(6):858–62.
Clowes JA, Robinson RT, Heller SR, Eastell R, Blumsohn A. Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. J Clin Endocrinol Metab. 2002;87(7):3324–9.
Clowes JA, Allen HC, Prentis DM, Eastell R, Blumsohn A. Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J Clin Endocrinol Metab. 2003;88(10):4867–73.
Cunha JS, Ferreira VM, Maquigussa E, Naves MA, Boim MA. Effects of high glucose and high insulin concentrations on osteoblast function in vitro. Cell Tissue Res. 2014;358:249.
Dienelt A, zur Nieden NI. Hyperglycemia impairs skeletogenesis from embryonic stem cells by affecting osteoblast and osteoclast differentiation. Stem Cells Dev. 2011;20(3):465–74.
Garcia-Hernandez A, Arzate H, Gil-Chavarria I, Rojo R, Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012;50(1):276–88.
Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27(2):301–8.
Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96.
Hannon R, Eastell R. Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int. 2000;11 Suppl 6:S30–44.
Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ, Christiansen C. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003;18(12):2180–9.
Holst JJ, Hartmann B, Gottschalck IB, Jeppesen PB, Miholic J, Henriksen DB. Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate. Scand J Gastroenterol. 2007;42(7):814–20.
International Diabetes Federation. IDF Diabetes Atlas Update 2014. Available from: http://www.idf.org/diabetesatlas/update-2014. 2 Oct 2015.
Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166(5):495–505.
Karatzoglou I, Yavropoulou MP, Pikilidou M, Germanidis G, Akriviadis E, Papazisi A, Daniilidis M, Zebekakis P, Yovos JG. Postprandial response of bone turnover markers in patients with Crohn’s disease. World J Gastroenterol: WJG. 2014;20(28):9534–40.
Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am. 2005;34(4):1015–30, xi.
Knudsen ST, Jeppesen P, Poulsen PL, Andersen NH, Bek T, Schmitz O, Mogensen CE, Rasmussen LM. Plasma concentrations of osteoprotegerin during normo- and hyperglycaemic clamping. Scand J Clin Lab Invest. 2007;67(2):135–42.
Li YM, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, Limbert C, Seufert J, Kassem M, Schutze N, Jakob F, Ebert R. Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun. 2007;363(1):209–15.
Liu Z, Jiang H, Dong K, Liu S, Zhou W, Zhang J, Meng L, Rausch-Fan X, Xu X. Different concentrations of glucose regulate proliferation and osteogenic differentiation of osteoblasts via the PI3 kinase/Akt pathway. Implant Dent. 2015;24(1):83–91.
Lopez-Herradon A, Portal-Nunez S, Garcia-Martin A, Lozano D, Perez-Martinez FC, Cena V, Esbrit P. Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormone-related protein in osteoblastic cells. J Cell Biochem. 2013;114(8):1908–16.
Ma P, Gu B, Xiong W, Tan B, Geng W, Li J, Liu H. Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment. PLoS One. 2014;9(11):e112243.
Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, Kousteni S, Rubin MR. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(9):3240–50.
Meier C, Seibel MJ, Kraenzlin ME. Use of bone turnover markers in the real world: are we there yet? J Bone Miner Res. 2009;24(3):386–8.
Nissen A, Christensen M, Knop FK, Vilsboll T, Holst JJ, Hartmann B. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab. 2014;99(11):E2325–9.
Paldanius PM, Ivaska KK, Hovi P, Andersson S, Vaananen HK, Kajantie E, Makitie O. The effect of oral glucose tolerance test on serum osteocalcin and bone turnover markers in young adults. Calcif Tissue Int. 2012;90(2):90–5.
Schwetz V, Lerchbaum E, Schweighofer N, Hacker N, Trummer O, Borel O, Pieber TR, Chapurlat R, Obermayer-Pietsch B. Osteocalcin levels on oral glucose load in women being investigated for polycystic ovary syndrome. Endocr Pract. 2014;20(1):5–14.
Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev/Aust Assoc Clin Biochem. 2005;26(4):97–122.
Seibel MJ, Lang M, Geilenkeuser WJ. Interlaboratory variation of biochemical markers of bone turnover. Clin Chem. 2001;47(8):1443–50.
Shao X, Cao X, Song G, Zhao Y, Shi B. Metformin rescues the MG63 osteoblasts against the effect of high glucose on proliferation. J Diabetes Res. 2014;2014:453940.
Starup-Linde J. Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol. 2013;4:21.
Starup-Linde J. Investigations of diabetic bone disease: literature, registry, and clinical studies. Diss. Videnbasen for Aalborg UniversitetVBN, Aalborg UniversitetAalborg University, Det Sundhedsvidenskabelige Fakultet, The Faculty of Medicine, Klinisk InstitutDepartment of Clinical Medicine. 2015.
Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus- a systematic review. Bone. 2015;82:69.
Starup-Linde J, Eriksen SA, Lykkeboe S, Handberg A, Vestergaard P. Biochemical markers of bone turnover in diabetes patients – a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos Int. 2014;25(6):1697–708.
Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun. 2015;461(2):193–9.
Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Morii H, Otani S. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone. 1998;22(1):17–23.
Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA, IOF-IFCC Bone Marker Standards Working Group. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22(2):391–420.
Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int. 2007;18(4):427–44.
Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48(7):1292–9.
Viljakainen H, Ivaska KK, Paldanius P, Lipsanen-Nyman M, Saukkonen T, Pietilainen KH, Andersson S, Laitinen K, Makitie O. Suppressed bone turnover in obesity: a link to energy metabolism? A case–control study. J Clin Endocrinol Metab. 2014;99(6):2155–63.
White GH. Metrological traceability in clinical biochemistry. Ann Clin Biochem. 2011;48(Pt 5):393–409.
Whitham KM, Milford-Ward A. External quality assessment of bone metabolism marker assays. Initial experiences in a UK NEQAS programme. Clin Chem Lab Med: CCLM/FESCC. 2000;38(11):1121–4.
Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, Abboud-Werner SL. High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone. 2008;42(6):1122–30.
Wu YY, Yu T, Zhang XH, Liu YS, Li F, Wang YY, Wang YY, Gong P. 1,25(OH)2D3 inhibits the deleterious effects induced by high glucose on osteoblasts through undercarboxylated osteocalcin and insulin signaling. J Steroid Biochem Mol Biol. 2012;132(1–2):112–9.
Xu F, Ye YP, Dong YH, Guo FJ, Chen AM, Huang SL. Inhibitory effects of high glucose/insulin environment on osteoclast formation and resorption in vitro. J Huazhong Univ Sci Technolog Med Sci = Hua zhong ke ji da xue xue baoYi xue Ying De wen ban = Huazhong keji daxue xuebaoYixue Yingdewen ban. 2013;33(2):244–9.
Xu J, Yue F, Wang J, Chen L, Qi W. High glucose inhibits receptor activator of nuclear factorkappaB ligand-induced osteoclast differentiation via downregulation of vATPase V0 subunit d2 and dendritic cellspecific transmembrane protein. Mol Med Rep. 2015;11(2):865–70.
Zayzafoon M, Stell C, Irwin R, McCabe LR. Extracellular glucose influences osteoblast differentiation and c-Jun expression. J Cell Biochem. 2000;79(2):301–10.
Zhen D, Chen Y, Tang X. Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications. 2010;24(5):334–44.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media Dordrecht
About this entry
Cite this entry
Starup-Linde, J., Westberg-Rasmussen, S., Lykkeboe, S., Vestergaard, P. (2015). Effects of Glucose on Bone Markers: Overview of Current Knowledge with Focus on Diabetes, Glucose, and Bone Markers. In: Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7745-3_15-1
Download citation
DOI: https://doi.org/10.1007/978-94-007-7745-3_15-1
Received:
Accepted:
Published:
Publisher Name: Springer, Dordrecht
Online ISBN: 978-94-007-7745-3
eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences