MAP17 as Biomarker for Cancer Treatment

  • Amancio Carnero
Living reference work entry


MAP17 is a small 17 kDa membrane-associated protein present in a high proportion of tumors, not only carcinoma. It has been found that it is not present in adenoma and benign tumors and highly expressed in metastatic carcinoma. Therefore, the expression correlates with tumor stage and malignant status of the tumor. The expression is mainly driven at transcriptional level either by promoter activation or demethylation. Expression of MAP17 in primary cells triggers senescence through p38, but in already tumoral cells, it enhances the tumoral capabilities of these cells increasing proliferation, migration, resistance to apoptosis, etc. MAP17 expression increases the levels of oxidative species, ROS, in cells which may account for some of the increased tumoral properties. In turn, a further increase of ROS might switch the balance toward apoptosis. Thus, MAP17 may increase the efficacy of therapies increasing ROS and therefore constitute a biomarker for better prognosis of these tumors. In cervix tumors, currently treated with cisplatin and radiotherapy, the presence of MAP17 is a marker for good response to therapy and good survival of the patients. Therefore, MAP17 is not only a marker for stage and malignant status but also of a better response to drugs involving oxidative stress.


Reactive Oxygen Species MAP17 Expression High Oxidative Stress Enhance Reactive Oxygen Species Production Tumorigenic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028), Consejeria de Ciencia e Innovacion, and Consejeria de Salud of the Junta de Andalucia (CTS-6844 and PI-0306-2012).


  1. Bae GU, Seo DW, Kwon HK, Lee HY, Hong S, Lee ZW, et al. Hydrogen peroxide activates p70(S6k) signaling pathway. J Biol Chem. 1999;274:32596–602.CrossRefPubMedGoogle Scholar
  2. Behrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 2003;31:1441–4.CrossRefPubMedGoogle Scholar
  3. Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 2002;3:420–5.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Blasco T, Aramayona J, Alcalde A, Catalan J, Sarasa M, Sorribas V. Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes. Am J Physiol Renal Physiol. 2003;285:F799–810.CrossRefPubMedGoogle Scholar
  5. Bordogna W, Hudson JD, Buddle J, Bennett DC, Beach DH, Carnero A. EMX homeobox genes regulate microphthalmia and alter melanocyte biology. Exp Cell Res. 2005;311:27–38.CrossRefPubMedGoogle Scholar
  6. Burdon RH, Gill V, Rice-Evans C. Oxidative stress and tumour cell proliferation. Free Radic Res Commun. 1990;11:65–76.CrossRefPubMedGoogle Scholar
  7. Burdon RH. Control of cell proliferation by reactive oxygen species. Biochem Soc Trans. 1996;24:1028–32.CrossRefPubMedGoogle Scholar
  8. Carnero A, Hudson JD, Hannon GJ, Beach DH. Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res. 2000;28:2234–41.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Carnero A. MAP17 and the double-edged sword of ROS. Biochim Biophys Acta. 2012;1826:44–52.PubMedGoogle Scholar
  10. Castro ME, Ferrer I, Cascon A, Guijarro MV, Lleonart M, Ramon y Cajal S, et al. PPP1CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis. 2008;29:491–9.CrossRefPubMedGoogle Scholar
  11. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.CrossRefPubMedGoogle Scholar
  12. Ferrer I, Blanco-Aparicio C, Peregrina S, Canamero M, Fominaya J, Cecilia Y, et al. Spinophilin acts as a tumor suppressor by regulating Rb phosphorylation. Cell Cycle. 2011;10:2751–62.CrossRefPubMedGoogle Scholar
  13. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.CrossRefPubMedGoogle Scholar
  14. Fruehauf JP, Meyskens Jr FL. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13:789–94.CrossRefPubMedGoogle Scholar
  15. Guijarro MV, Castro ME, Romero L, Moneo V, Carnero A. Large scale genetic screen identifies MAP17 as protein bypassing TNF-induced growth arrest. J Cell Biochem. 2007a;101:112–21.CrossRefPubMedGoogle Scholar
  16. Guijarro MV, Leal JF, Blanco-Aparicio C, Alonso S, Fominaya J, Lleonart M, et al. MAP17 enhances the malignant behavior of tumor cells through ROS increase. Carcinogenesis. 2007b;28:2096–104.CrossRefPubMedGoogle Scholar
  17. Guijarro MV, Leal JF, Fominaya J, Blanco-Aparicio C, Alonso S, Lleonart M, et al. MAP17 overexpression is a common characteristic of carcinomas. Carcinogenesis. 2007c;28:1646–52.CrossRefPubMedGoogle Scholar
  18. Guijarro MV, Link W, Rosado A, Leal JF, Carnero A. MAP17 inhibits Myc-induced apoptosis through PI3K/AKT pathway activation. Carcinogenesis. 2007d;28:2443–50.CrossRefPubMedGoogle Scholar
  19. Guijarro MV, Vergel M, Marin JJ, Munoz-Galvan S, Ferrer I, Cajal SR, et al. p38alpha limits the contribution of MAP17 to cancer progression in breast tumors. Oncogene. 2012;31:4447.CrossRefPubMedGoogle Scholar
  20. Hannon GJ, Sun P, Carnero A, Xie LY, Maestro R, Conklin DS, et al. MaRX: an approach to genetics in mammalian cells. Science. 1999;283:1129–30.CrossRefPubMedGoogle Scholar
  21. Haulica I, Boisteanu D, Neagu B. The role of oxidative stress in normal and pathological adaptive reactions. Rev Med Chir Soc Med Nat Iasi. 2001;105:11–8.PubMedGoogle Scholar
  22. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997;275:1649–52.CrossRefPubMedGoogle Scholar
  23. Jaeger C, Schaefer B, Wallich R, Kramer M. The membrane-associated protein pKe#192/MAP17 in human keratinocytes. J Invest Dermatol. 2000;115:375–80.CrossRefPubMedGoogle Scholar
  24. Klaunig JE, Xu Y, Isenberg JS, Bachowski S, Kolaja KL, Jiang J, et al. The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect. 1998;106 Suppl 1:289–95.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Kocher O, Cheresh P, Brown LF, Lee SW. Identification of a novel gene, selectively up-regulated in human carcinomas, using the differential display technique. Clin Cancer Res. 1995;1:1209–15.PubMedGoogle Scholar
  26. Lanaspa MA, Giral H, Breusegem SY, Halaihel N, Baile G, Catalan J, et al. Interaction of MAP17 with NHERF3/4 induces translocation of the renal Na/Pi IIa transporter to the trans-Golgi. Am J Physiol Renal Physiol. 2007;292:F230–42.CrossRefPubMedGoogle Scholar
  27. Leal JF, Fominaya J, Cascon A, Guijarro MV, Blanco-Aparicio C, Lleonart M, et al. Cellular senescence bypass screen identifies new putative tumor suppressor genes. Oncogene. 2007;27:1961.CrossRefPubMedGoogle Scholar
  28. Manda G, Nechifor MT, Neagu TM. Reactive oxygen species, cancer and anticancer therapies. Curr Chem Biol. 2009;3:342–66.CrossRefGoogle Scholar
  29. Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, et al. Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: an overview. J Transl Med. 2011;9:171.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Nathan CF, Arrick BA, Murray HW, DeSantis NM, Cohn ZA. Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis. J Exp Med. 1981;153:766–82.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Nathan CF, Cohn ZA. Antitumor effects of hydrogen peroxide in vivo. J Exp Med. 1981;154:1539–53.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Noh M, Yeo H, Ko J, Kim HK, Lee CH. MAP17 is associated with the T-helper cell cytokine-induced down-regulation of filaggrin transcription in human keratinocytes. Exp Dermatol. 2010;19:355–62.CrossRefPubMedGoogle Scholar
  33. Perez M, Praena-Fernandez JM, Felipe-Abrio B, Lopez-Garcia MA, Lucena-Cacace A, Garcia A, et al. MAP17 and SGLT1 protein expression levels as prognostic markers for cervical tumor patient survival. PLoS One. 2013;8:e56169.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Pribanic S, Gisler S, Bacic D, Madjdpour C, Hernando N, Sorribas V, et al. Interactions of MAP17 with the NaPi-IIa/PDZK1 protein complex in renal proximal tubular cells. Am J Physiol Renal Physiol. 2003;285:F784–91.CrossRefPubMedGoogle Scholar
  35. Rodriguez-Rodero S, Fernandez AF, Fernandez-Morera JL, Castro-Santos P, Bayon GF, Ferrero C, et al. DNA methylation signatures identify biologically distinct thyroid cancer subtypes. J Clin Endocrinol Metab. 2013;98:2811–21.CrossRefPubMedGoogle Scholar
  36. Simizu S, Takada M, Umezawa K, Imoto M. Requirement of caspase-3(−like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem. 1998a;273:26900–7.CrossRefPubMedGoogle Scholar
  37. Simizu S, Umezawa K, Takada M, Arber N, Imoto M. Induction of hydrogen peroxide production and Bax expression by caspase-3(−like) proteases in tyrosine kinase inhibitor-induced apoptosis in human small cell lung carcinoma cells. Exp Cell Res. 1998b;238:197–203.CrossRefPubMedGoogle Scholar
  38. Storz P. Reactive oxygen species in tumor progression. Front Biosci. 2005;10:1881–96.CrossRefPubMedGoogle Scholar
  39. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science. 1995;270:296–9.CrossRefPubMedGoogle Scholar
  40. Vergel M, Carnero A. Bypassing cellular senescence by genetic screening tools. Clin Transl Oncol. 2010;12:410–7.CrossRefPubMedGoogle Scholar
  41. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.CrossRefPubMedGoogle Scholar
  42. Yoshikawa T, Kokura S, Tainaka K, Naito Y, Kondo M. A novel cancer therapy based on oxygen radicals. Cancer Res. 1995;55:1617–20.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Instituto de Biomedicina de Sevilla (IBIS)Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de SevillaSevillaSpain

Personalised recommendations