Biomarkers of Oxidative Stress in Blood

  • Fawaz Alzaid
  • Vinood B. Patel
  • Victor R. Preedy
Living reference work entry

Abstract

The malfunction of the finely tuned homeostatic systems that maintain oxidative balance is part of the pathology of almost every known human disease. There are scores of individual components and pathways which maintain oxidative balance. One or more of these maybe altered in disease, though it is difficult to determine what the triggering pathway or analyte is. In light of this, biomarkers are useful tools to evaluate oxidative imbalance or indicate the degree of oxidative stress.

When selecting which biomarkers for oxidative stress, there are three categories of biomarkers to choose from. These depend on the target of oxidation and are isoprostanes, oxysterols, and hydroxyoctadecadienoic acid. Biomarkers of nucleic acid oxidation include nucleotides, single- and double-stranded breaks in DNA, and RNA oxidative products. Oxidative damage to proteins can be measured via protein carbonyls, glutathione levels, glycosylated hemoglobin, and erythrocyte oxidation from fluorescent heme degradation products. In isolation, each of these will give specific information on the target of oxidation, as well as providing tentative information regarding affected pathways. Here, we describe in detail the selective markers, protein carbonyls, oxysterols, isoprostanes, heme degradation products, HbA1C, and many more.

All the above biomarkers are discussed in this review. As with ideal biomarkers, these have a mixed utility and can be measured in different tissues and compartments. In blood, each will provide a certain amount of information, which will vary between giving a systemic scope of oxidative stress (e.g., erythrocyte oxidation) to evaluating oxidative stress in specific diseases (e.g., glycosylated hemoglobin and diabetes). Ideally, it is better to select multiple biomarkers based on an in-depth knowledge of the condition at hand.

Keywords

Oxidative Stress Comet Assay Protein Carbonyl Exhale Breath Condensate Systemic Oxidative Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

8-OHG

7,8-Dihydro-8-Oxo-Guanosine

8-oxodG

8-Oxo-7 8-Dihydro-2′Deoxyguanosine

8-oxoGua

8-Oxo-7 8-Dihydroguanine

AGE

Advanced Glycation End Products

AO

Antioxidant

ATP

Adenosine Triphosphate

CRP

C-Reactive Protein

DNA

Deoxyribonucleic Acid

DSB

Double-Stranded Break

ELISA

Enzyme-Linked Immunosorbent Assay

FACS

Fluorescence Activated Cell Sorting

GC

Gas Chromatography

GSH

Glutathione

HbA1c

Glycosylated Hemoglobin

HPLC

High Performance Liquid Chromatography

IFNγ

Interferon γ

IHC

Immunohistochemistry

IL-1

Interleukin-1

IL-6

Interleukin-6

mRNA

Messenger Ribonucleic Acid

MS

Mass Spectrometry

NF-κB

Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells

PBMC

Peripheral Blood Mononuclear Cells

RAGE

Receptors for Advanced Glycation End Products

RNA

Ribonucleic Acid

ROS

Reactive Oxygen Species

SSB

Single-Stranded Break

TNFα

Tumor Necrosis Factor α

References

  1. Abe T, Isobe C, Murata T, Sato C, Tohgi H. Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci Lett. 2003;336(2):105–8.PubMedCrossRefGoogle Scholar
  2. Aghaloo TL, Amantea CM, Cowan CM, Richardson JA, Wu BM, Parhami F, Tetradis S. Oxysterols enhance osteoblast differentiation in vitro and bone healing in vivo. J Orthop Res. 2007;25(11):1488–97.PubMedCrossRefGoogle Scholar
  3. Ames BN, Shigenaga MK, Gold LS. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect. 1993;101 Suppl 5:35–44.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bachi A, Zuccato E, Baraldi M, Fanelli R, Chiabrando C. Measurement of urinary 8-Epi-prostaglandin F2alpha, a novel index of lipid peroxidation in vivo, by immunoaffinity extraction/gas chromatography-mass spectrometry. Basal levels in smokers and nonsmokers. Free Radic Biol Med. 1996;20(4):619–24.PubMedCrossRefGoogle Scholar
  5. Badr KF, Abi-Antoun TE. Isoprostanes and the kidney. Antioxid Redox Signal. 2005;7(1–2):236–43.PubMedCrossRefGoogle Scholar
  6. Bandeen-Roche K, Walston JD, Huang Y, Semba RD, Ferrucci L. Measuring systemic inflammatory regulation in older adults: evidence and utility. Rejuvenation Res. 2009;12(6):403–10.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Beutler E, Gelbart T. Plasma glutathione in health and in patients with malignant disease. J Lab Clin Med. 1985;105(5):581–4.PubMedGoogle Scholar
  8. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.CrossRefGoogle Scholar
  9. Bonaventura C, Henkens R, Alayash AI, Banerjee S, Crumbliss AL. Molecular controls of the oxygenation and redox reactions of hemoglobin. Antioxid Redox Signal. 2013;18(17):2298–313.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bopp C, Bierhaus A, Hofer S, Bouchon A, Nawroth PP, Martin E, Weigand MA. Bench-to-bedside review: the inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit Care. 2008;12(1):201.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Broedbaek K, Poulsen HE, Weimann A, Kom GD, Schwedhelm E, Nielsen P, Boger RH. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis. Free Radic Biol Med. 2009;47(8):1230–3.PubMedCrossRefGoogle Scholar
  12. Broedbaek K, Ribel-Madsen R, Henriksen T, Weimann A, Petersen M, Andersen JT, Afzal S, Hjelvang B, Roberts 2nd LJ, Vaag A, Poulsen P, Poulsen HE. Genetic and environmental influences on oxidative damage assessed in elderly Danish twins. Free Radic Biol Med. 2011a;50(11):1488–91.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Broedbaek K, Siersma V, Andersen JT, Petersen M, Afzal S, Hjelvang B, Weimann A, Semba RD, Ferrucci L, Poulsen HE. The association between low-grade inflammation, iron status and nucleic acid oxidation in the elderly. Free Radic Res. 2011b;45(4):409–16.PubMedCrossRefGoogle Scholar
  14. Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther. 2008;88(11):1322–35.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chapple IL. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol. 1997;24(5):287–96.PubMedCrossRefGoogle Scholar
  16. Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249–61.PubMedCrossRefGoogle Scholar
  17. Collins, et al. Mol Biotechnol. 2004;26:249–61.PubMedCrossRefGoogle Scholar
  18. Costa AD, Pierre SV, Cohen MV, Downey JM, Garlid KD. cGMP signalling in pre- and post-conditioning: the role of mitochondria. Cardiovasc Res. 2008;77(2):344–52.PubMedCrossRefGoogle Scholar
  19. Crawford JH, Chacko BK, Kevil CG, Patel RP. The red blood cell and vascular function in health and disease. Antioxid Redox Signal. 2004;6(6):992–9.PubMedCrossRefGoogle Scholar
  20. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38.PubMedCrossRefGoogle Scholar
  21. Dar ME, Jorgensen TJ. Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system. Nucleic Acids Res. 1995;23(16):3224–30.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dzeletovic S, Breuer O, Lund E, Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem. 1995;225(1):73–80.PubMedCrossRefGoogle Scholar
  23. Encode Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, N. C. S. Program, C. Baylor College of Medicine Human Genome Sequencing, C. Washington University Genome Sequencing, Broad I, I. Children’s Hospital Oakland Research, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Zhang X, Xu M, Haidar JN, Yu Y, Ruan Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.CrossRefGoogle Scholar
  24. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599–622.PubMedCrossRefGoogle Scholar
  25. Fairbairn DW, Olive PL, O’Neill KL. The comet assay: a comprehensive review. Mutat Res. 1995;339(1):37–59.PubMedCrossRefGoogle Scholar
  26. Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia. 2003;46(12):1594–603.PubMedCrossRefGoogle Scholar
  27. Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev. 2014;33:79–97.PubMedCrossRefGoogle Scholar
  28. Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med. 2007;42(2):153–64.PubMedCrossRefGoogle Scholar
  29. Gambhir JK, Lali P, Jain AK. Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem. 1997;30(4):351–5.PubMedCrossRefGoogle Scholar
  30. Go YM, Jones DP. The redox proteome. J Biol Chem. 2013;288(37):26512–20.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Gur M, Yildiz A, Demirbag R, Yilmaz R, Kocyigit A, Celik H, Aksoy N. Increased lymphocyte deoxyribonucleic acid damage in patients with cardiac syndrome X. Mutat Res. 2007;617(1–2):8–15.PubMedCrossRefGoogle Scholar
  32. Haghdoost S, Maruyama Y, Pecoits-Filho R, Heimburger O, Seeberger A, Anderstam B, Suliman ME, Czene S, Lindholm B, Stenvinkel P, Harms-Ringdahl M. Elevated serum 8-oxo-dG in hemodialysis patients: a marker of systemic inflammation? Antioxid Redox Signal. 2006;8(11–12):2169–73.PubMedCrossRefGoogle Scholar
  33. Halliwell B, Lee CY. Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid Redox Signal. 2010;33(2):145–56.CrossRefGoogle Scholar
  34. Henriksen T, Hillestrom PR, Poulsen HE, Weimann A. Automated method for the direct analysis of 8-oxo-guanosine and 8-oxo-2′-deoxyguanosine in human urine using ultraperformance liquid chromatography and tandem mass spectrometry. Free Radic Biol Med. 2009;47(5):629–35.PubMedCrossRefGoogle Scholar
  35. Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem. 2005;386(4):333–7.PubMedCrossRefGoogle Scholar
  36. Honda K, Smith MA, Zhu X, Baus D, Merrick WC, Tartakoff AM, Hattier T, Harris PL, Siedlak SL, Fujioka H, Liu Q, Moreira PI, Miller FP, Nunomura A, Shimohama S, Perry G. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J Biol Chem. 2005;280(22):20978–86.PubMedCrossRefGoogle Scholar
  37. Honda A, Yamashita K, Hara T, Ikegami T, Miyazaki T, Shirai M, Xu G, Numazawa M, Matsuzaki Y. Highly sensitive quantification of key regulatory oxysterols in biological samples by LC-ESI-MS/MS. J Lipid Res. 2009;50(2):350–7.PubMedCrossRefGoogle Scholar
  38. Huang LC, Clarkin KC, Wahl GM. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest. Proc Natl Acad Sci U S A. 1996;93(10):4827–32.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26(15):2166–76.PubMedCrossRefGoogle Scholar
  40. Isobe C, Abe T, Terayama Y. Homocysteine may contribute to pathogenesis of RNA damage in brains with Alzheimer’s disease. Neurodegener Dis. 2009;6(5–6):252–7.PubMedCrossRefGoogle Scholar
  41. Jacob KD, Noren Hooten N, Trzeciak AR, Evans MK. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev. 2013;134(3–4):139–57.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Janssen LJ. Isoprostanes and lung vascular pathology. Am J Respir Cell Mol Biol. 2008;39(4):383–9.PubMedCrossRefGoogle Scholar
  43. Kanias T, Acker JP. Biopreservation of red blood cells–the struggle with hemoglobin oxidation. FEBS J. 2010;277(2):343–56.PubMedCrossRefGoogle Scholar
  44. Kasapoglu M, Ozben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol. 2001;36(2):209–20.PubMedCrossRefGoogle Scholar
  45. Kastle M, Grune T. Protein oxidative modification in the aging organism and the role of the ubiquitin proteasomal system. Curr Pharm Des. 2011;17(36):4007–22.PubMedCrossRefGoogle Scholar
  46. Kedziora-Kornatowska K, Szewczyk-Golec K, Czuczejko J, van Marke K, de Lumen H, Pawluk J, Motyl MK, Kedziora J. Effect of melatonin on the oxidative stress in erythrocytes of healthy young and elderly subjects. J Pineal Res. 2007;42(2):153–8.PubMedCrossRefGoogle Scholar
  47. Kong Q, Shan X, Chang Y, Tashiro H, Lin CL. RNA oxidation: a contributing factor or an epiphenomenon in the process of neurodegeneration. Free Radic Res. 2008;42(9):773–7.PubMedCrossRefGoogle Scholar
  48. Kosower NS, Kosower EM. The glutathione status of cells. Int Rev Cytol. 1978;54:109–60.PubMedCrossRefGoogle Scholar
  49. Kuo LJ, Yang LX. Gamma-H2AX – a novel biomarker for DNA double-strand breaks. In Vivo. 2008;22(3):305–9.PubMedGoogle Scholar
  50. Larsen ML, Horder M, Mogensen EF. Effect of long-term monitoring of glycosylated hemoglobin levels in insulin-dependent diabetes mellitus. N Engl J Med. 1990;323(15):1021–5.PubMedCrossRefGoogle Scholar
  51. Lehman R, Krumholz HM. Tight control of blood glucose in long standing type 2 diabetes. BMJ. 2009;338:b800.PubMedCrossRefGoogle Scholar
  52. Levine RL, Stadtman ER. Oxidative modification of proteins during aging. Exp Gerontol. 2001;36(9):1495–502.PubMedCrossRefGoogle Scholar
  53. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004;116(Suppl 6A):9S–16.PubMedCrossRefGoogle Scholar
  54. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362(6422):709–15.PubMedCrossRefGoogle Scholar
  55. Little RR, Sacks DB. HbA1c: how do we measure it and what does it mean? Curr Opin Endocrinol Diabetes Obes. 2009;16(2):113–8.PubMedCrossRefGoogle Scholar
  56. Lyons TJ, Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers. Transl Res. 2012;159(4):303–12.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Maeda H, Akaike T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc). 1998;63(7):854–65.Google Scholar
  58. Mano J. Reactive carbonyl species: their production from lipid peroxides, action in environmental stress, and the detoxification mechanism. Plant Physiol Biochem. 2012;59:90–7.PubMedCrossRefGoogle Scholar
  59. Martinet W, de Meyer GR, Herman AG, Kockx MM. Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest. 2004;34(5):323–7.PubMedCrossRefGoogle Scholar
  60. Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75.PubMedCrossRefGoogle Scholar
  61. Matsubara LS, Machado PE. Age-related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes. Braz J Med Biol Res. 1991;24(5):449–54.PubMedGoogle Scholar
  62. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts 2nd LJ. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990;87(23):9383–7.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Morrow JD, Awad JA, Kato T, Takahashi K, Badr KF, Roberts 2nd LJ, Burk RF. Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation. J Clin Invest. 1992a;90(6):2502–7.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts 2nd LJ. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci U S A. 1992b;89(22):10721–5.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol. 2010;11(3):196–207.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Nagababu E, Rifkind JM. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem Biophys Res Commun. 1998;247(3):592–6.PubMedCrossRefGoogle Scholar
  67. Nagababu E, Mohanty JG, Bhamidipaty S, Ostera GR, Rifkind JM. Role of the membrane in the formation of heme degradation products in red blood cells. Life Sci. 2010;86(3–4):133–8.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Nakamura AJ, Chiang YJ, Hathcock KS, Horikawa I, Sedelnikova OA, Hodes RJ, Bonner WM. Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenetics Chromatin. 2008;1(1):6.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Nakamura T, Cho DH, Lipton SA. Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol. 2012;238(1):12–21.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009;47(5):469–84.PubMedCrossRefGoogle Scholar
  71. Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338(1):668–76.PubMedCrossRefGoogle Scholar
  72. Noren Hooten N, Ejiogu N, Zonderman AB, Evans MK. Association of oxidative DNA damage and C-reactive protein in women at risk for cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32(11):2776–84.PubMedCrossRefGoogle Scholar
  73. Nouroog-Zadeh J. Key issues in F2-isoprostane analysis. Biochem Soc Trans. 2008;36(Pt 5):1060–5.CrossRefGoogle Scholar
  74. Nunomura A, Perry G, Hirai K, Aliev G, Takeda A, Chiba S, Smith MA. Neuronal RNA oxidation in Alzheimer’s disease and Down’s syndrome. Ann N Y Acad Sci. 1999;893:362–4.PubMedCrossRefGoogle Scholar
  75. Pardo B, Gomez-Gonzalez B, Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci. 2009;66(6):1039–56.PubMedCrossRefGoogle Scholar
  76. Poulsen HE, Nadal LL, Broedbaek K, Nielsen PE, Weimann A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim Biophys Acta. 2014;1840(2):801–8.PubMedCrossRefGoogle Scholar
  77. Reilly M, Delanty N, Lawson JA, FitzGerald GA. Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation. 1996;94(1):19–25.PubMedCrossRefGoogle Scholar
  78. Rhee Y, Valentine MR, Termini J. Oxidative base damage in RNA detected by reverse transcriptase. Nucleic Acids Res. 1995;23(16):3275–82.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Rifkind JM, Ramasamy S, Manoharan PT, Nagababu E, Mohanty JG. Redox reactions of hemoglobin. Antioxid Redox Signal. 2004;6(3):657–66.PubMedCrossRefGoogle Scholar
  80. Roberts LJ, Morrow JD. Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med. 2000;28(4):505–13.PubMedCrossRefGoogle Scholar
  81. Rozalski R, Siomek A, Gackowski D, Foksinski M, Gran C, Klungland A, Olinski R. Substantial decrease of urinary 8-oxo-7,8-dihydroguanine, a product of the base excision repair pathway, in DNA glycosylase defective mice. Int J Biochem Cell Biol. 2005;37(6):1331–6.PubMedCrossRefGoogle Scholar
  82. Ryan KA, Smith Jr MF, Sanders MK, Ernst PB. Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infect Immun. 2004;72(4):2123–30.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg Jr P, Reed RL, Jones DP. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med. 1998;24(5):699–704.PubMedCrossRefGoogle Scholar
  84. Schurman SH, Dunn CA, Greaves R, Yu B, Ferrucci L, Croteau DL, Seidman MM, Bohr VA. Age-related disease association of endogenous gamma-H2AX foci in mononuclear cells derived from leukapheresis. PLoS One. 2012;7(9):e45728.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Shan X, Lin CL. Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging. 2006;27(5):657–62.PubMedCrossRefGoogle Scholar
  86. Shen Z, Wu W, Hazen SL. Activated leukocytes oxidatively damage DNA, RNA, and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry. 2000;39(18):5474–82.PubMedCrossRefGoogle Scholar
  87. Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157–80.PubMedCrossRefGoogle Scholar
  88. Siomek A, Rytarowska A, Szaflarska-Poplawska A, Gackowski D, Rozalski R, Dziaman T, Czerwionka-Szaflarska M, Olinski R. Helicobacter pylori infection is associated with oxidatively damaged DNA in human leukocytes and decreased level of urinary 8-oxo-7,8-dihydroguanine. Carcinogenesis. 2006;27(3):405–8.PubMedCrossRefGoogle Scholar
  89. Sircar D, Subbaiah PV. Isoprostane measurement in plasma and urine by liquid chromatography-mass spectrometry with one-step sample preparation. Clin Chem. 2007;53(2):251–8.PubMedCrossRefGoogle Scholar
  90. Skold A, Cosco DL, Klein R. Methemoglobinemia: pathogenesis, diagnosis, and management. South Med J. 2011;104(11):757–61.PubMedCrossRefGoogle Scholar
  91. Sorci G, Riuzzi F, Giambanco I, Donato R. RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta. 2013;1833(1):101–9.PubMedCrossRefGoogle Scholar
  92. Szanton SL, Rifkind JM, Mohanty JG, Miller 3rd ER, Thorpe RJ, Nagababu E, Epel ES, Zonderman AB, Evans MK. Racial discrimination is associated with a measure of red blood cell oxidative stress: a potential pathway for racial health disparities. Int J Behav Med. 2012;19(4):489–95.PubMedCentralPubMedCrossRefGoogle Scholar
  93. Tanaka M, Chock PB, Stadtman ER. Oxidized messenger RNA induces translation errors. Proc Natl Acad Sci U S A. 2007;104(1):66–71.PubMedCentralPubMedCrossRefGoogle Scholar
  94. Tetik S, Ahmad S, Alturfan AA, Fresko I, Disbudak M, Sahin Y, Aksoy H, Yardimci KT. Determination of oxidant stress in plasma of rheumatoid arthritis and primary osteoarthritis patients. Indian J Biochem Biophys. 2010;47(6):353–8.PubMedGoogle Scholar
  95. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999;7(2):169–77.PubMedCrossRefGoogle Scholar
  96. Toda T, Nakamura M, Morisawa H, Hirota M, Nishigaki R, Yoshimi Y. Proteomic approaches to oxidative protein modifications implicated in the mechanism of aging. Geriatr Gerontol Int. 2010;10 Suppl 1:S25–31.PubMedCrossRefGoogle Scholar
  97. Trzeciak M, Glen J, Roszkiewicz J, Nedoszytko B. Association of single nucleotide polymorphism of interleukin-18 with atopic dermatitis. J Eur Acad Dermatol Venereol. 2010;24(1):78–9.PubMedCrossRefGoogle Scholar
  98. Trzeciak AR, Mohanty JG, Jacob KD, Barnes J, Ejiogu N, Lohani A, Zonderman AB, Rifkind JM, Evans MK. Oxidative damage to DNA and single strand break repair capacity: relationship to other measures of oxidative stress in a population cohort. Mutat Res. 2012;736(1–2):93–103.PubMedCentralPubMedCrossRefGoogle Scholar
  99. van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Koycu S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG, Peter J, Burbach H, Hol EM. Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and down patients. Science. 1998;279(5348):242–7.PubMedCrossRefGoogle Scholar
  100. Vangaveti V, Baune BT, Kennedy RL. Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther Adv Endocrinol Metab. 2010;1(2):51–60.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Vaya J, Szuchman A, Tavori H, Aluf Y. Oxysterols formation as a reflection of biochemical pathways: summary of in vitro and in vivo studies. Chem Phys Lipids. 2011;164(6):438–42.PubMedCrossRefGoogle Scholar
  102. Weimann A, Belling D, Poulsen HE. Quantification of 8-oxo-guanine and guanine as the nucleobase, nucleoside and deoxynucleoside forms in human urine by high-performance liquid chromatography-electrospray tandem mass spectrometry. Nucleic Acids Res. 2002;30(2):E7.PubMedCentralPubMedCrossRefGoogle Scholar
  103. Wu IC, Shiesh SC, Kuo PH, Lin XZ. High oxidative stress is correlated with frailty in elderly Chinese. J Am Geriatr Soc. 2009;57(9):1666–71.PubMedCrossRefGoogle Scholar
  104. Xu L, Korade Z, Rosado Jr DA, Liu W, Lamberson CR, Porter NA. An oxysterol biomarker for 7-dehydrocholesterol oxidation in cell/mouse models for Smith-Lemli-Opitz syndrome. J Lipid Res. 2011;52(6):1222–33.PubMedCentralPubMedCrossRefGoogle Scholar
  105. Yamagishi S, Matsui T. Soluble form of a receptor for advanced glycation end products (sRAGE) as a biomarker. Front Biosci (Elite Ed). 2010;2:1184–95.CrossRefGoogle Scholar
  106. Yoshida Y, Niki E. Bio-markers of lipid peroxidation in vivo: hydroxyoctadecadienoic acid and hydroxycholesterol. Biofactors. 2006;27(1–4):195–202.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Fawaz Alzaid
    • 1
  • Vinood B. Patel
    • 2
  • Victor R. Preedy
    • 3
  1. 1.Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Centre de Recherche des Cordeliers (CRC)ParisFrance
  2. 2.Department of Biomedical Sciences, Faculty of Science & TechnologyUniversity of WestminsterLondonUK
  3. 3.Diabetes and Nutritional Sciences DivisionSchool of Medicine, King’s College LondonLondonUK

Personalised recommendations