Skip to main content

Glycome as Biomarkers

  • Living reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Glycomics is the comprehensive study of all glycans expressed in biological systems. Despite the fact that many routinely used biomarkers are either glycans of glycoconjugates, glycomic approaches to discover novel biomarkers are just on the rise. Routinely used glycan biomarkers have been developed using traditional immunological techniques and monoclonal antibody technology. Recent progress in the development of analytical methodologies and strategies has enabled new biomarker discovery programs. Glycosylation is found on cell surfaces and in extracellular matrices creating the initial point of contact in cellular interactions to mediate cell–cell interactions, cell–extracellular matrix interactions, and cell signaling. Thus, glycosylation is believed to be highly sensitive to the biological environment and has been implicated in various diseases including cancer. In this chapter, established glycan-related biomarkers as well as recently identified biomarker candidates are viewed. Glycomic techniques employed to identify those biomarkers are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADHD:

Attention-Deficit Hyperactivity Disorder

AFP:

Alpha-Fetoprotein

ARCL:

Autosomal Recessive Cutis Laxa

ASD:

Autism Spectrum Disorder

BEP:

β-Elimination in the Presence of Pyrazolone Analogs

CA:

Carbohydrate Antigen or Cancer Antigen

CDG:

Congenital Disorder of Glycosylation

CEA:

Carcinoembryonic Antigen

CS:

Chondroitin Sulfate

CSCs:

Cancer Stem Cells

CSF:

Cerebrospinal Fluid

DS:

Dermatan Sulfate

FUT:

Fucosyltransferase

GAG:

Glycosaminoglycan

GalNAc:

N-Acetylgalactosamine

GlcNAc:

N-Acetylglucosamine

GSLs:

Glycosphingolipids

GWAS:

Genome-Wide Association Study

HCC:

Hepatocellular Carcinoma

hECCs:

Human Embryonic Carcinoma Cells

HER2:

Human EGFR-Related 2

hESCs:

Human Embryonic Stem Cells

HILIC:

Hydrophilic Interaction Chromatography

hiPSCs:

Human Induced Pluripotent Stem Cells

HNF1A:

Hepatocyte Nuclear Factor 1-α

Ig:

Immunoglobulin

KS:

Keratan Sulfate

mAb:

Monoclonal Antibody

MALDI:

Matrix-Assisted Laser Desorption/Ionization

MODY:

Maturity-Onset Diabetes of the Young

MRM:

Multiple Reaction Monitoring

MS:

Mass Spectrometry

MUC:

Mucin

O-Fuc:

O-Linked Fucose

O-GalNAc:

O-Linked N-Acetylgalactosamine

O-GlcNAc:

O-Linked N-Acetylglucosamine

O-Man:

O-Linked Mannose

O-Xyl:

O-Linked Xylose

PGs:

Proteoglycans

PSA:

Prostate-Specific Antigen

RP:

Reversed Phase

Ser:

Serine

SNPs:

Single-Nucleotide Polymorphisms

SSEA:

Stage-Specific Embryonic Antigen

Thr:

Threonine

TOF:

Time of Flight

TRA:

Tumor-Rejection Antigen

References

  • Aerts JM, Groener JE, Kuiper S, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A. 2008;105:2812–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Angata T, Fujinawa R, Kurimoto A, et al. Integrated approach toward the discovery of glyco-biomarkers of inflammation-related diseases. Ann N Y Acad Sci. 2012;1253:159–69.

    Article  CAS  PubMed  Google Scholar 

  • Arnold JN, Saldova R, Hamid UM, Rudd PM. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics. 2008;8:3284–93.

    Article  CAS  PubMed  Google Scholar 

  • Badcock G, Pigott C, Goepel J, et al. The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res. 1999;59:4715–9.

    CAS  PubMed  Google Scholar 

  • Bang AG, Carpenter MK. Characteristics and characterization of human pluripotent stem cells. In: Lanza R, Gearhart J, Hogan B, et al., editors. Essentials of stem cell biology. 2nd ed. San Diego: Elsevier; 2009. Chapter 38, p. 339–343.

    Google Scholar 

  • Battula VL, Shi Y, Evans KW, et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest. 2012;122:2066–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennun SV, Yarema KJ, Betenbaugh MJ. Integration of the transcriptome and glycome for identification of glycan cell signatures. PLoS Comput Biol. 2013;9:e1002813.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burchell JM, Mungul A, Taylor-Papadimitriou J. O-Linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia. 2001;6:355–64.

    Article  CAS  PubMed  Google Scholar 

  • Carlson DM. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968;243:616–26.

    CAS  PubMed  Google Scholar 

  • Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y, et al. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat Biotechnol. 2009;27:797–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science. 2001;291:2351–6.

    Article  CAS  PubMed  Google Scholar 

  • Fanayan S, Hincapie M, Hancock WS. Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis. 2012;33:1746–54.

    Article  CAS  PubMed  Google Scholar 

  • Fogli A, Merle C, Roussel V, et al. CSF N-glycan profiles to investigate biomarkers in brain developmental disorders: application to leukodystrophies related to eIF2B mutations. PLoS One. 2012;7:e42688.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freeze HH. Genetic defects in the human glycome. Nat Rev Genet. 2006;7:537–51.

    Article  CAS  PubMed  Google Scholar 

  • Freeze HH, Eklund EA, Ng BG, et al. Neurology of inherited glycosylation disorders. Lancet Neurol. 2012;11:453–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujitani N, Furukawa J, Araki K, Fujioka T, Takegawa Y, Piao J, Nishioka T, Tamura T, Nikaido T, Ito M, Nakamura Y, Shinohara Y. Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers. Proc Natl Acad Sci U S A. 2013;110:2105–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furukawa J, Shinohara Y, Kuramoto H, et al. Comprehensive approach to structural and functional glycomics based on chemoselective glycoblotting and sequential tag conversion. Anal Chem. 2008;80:1094–101.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa J-I, Fujitani N, Araki K, et al. A versatile method for analysis of serine/threonine posttranslational modifications by β-elimination in the presence of pyrazolone analogues. Anal Chem. 2011;83:9060–7.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa J, Fujitani N, Shinohara Y. Recent advances in cellular glycomic analyses. Biomolecules. 2013;3:198–225.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilgunn S, Conroy PJ, Saldova R, et al. Aberrant PSA glycosylation–a sweet predictor of prostate cancer. Nat Rev Urol. 2013;10:99–107.

    Article  CAS  PubMed  Google Scholar 

  • Gion M, Mione R, Leon AE, Dittadi R. Comparison of the diagnostic accuracy of CA27.29 and CA15.3 in primary breast cancer. Clin Chem. 1999;45:630–7.

    CAS  PubMed  Google Scholar 

  • Gressner OA, Weiskirchen R, Gressner AM. Biomarkers of liver fibrosis: clinical translation of molecular pathogenesis or based on liver-dependent malfunction tests. Clin Chim Acta. 2007;381:107–13.

    Article  CAS  PubMed  Google Scholar 

  • Guillard M, Morava E, van Delft FL, et al. Plasma N-glycan profiling by mass spectrometry for congenital disorders of glycosylation type II. Clin Chem. 2011;57:593–602.

    Article  CAS  PubMed  Google Scholar 

  • Hasehira K, Tateno H, Onuma Y, Ito Y, Asashima M, Hirabayashi J. Structural and quantitative evidence for dynamic glycome shift upon production of human induced pluripotent stem cells. Mol Cell Proteomics. 2012;11:1913–23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirabayashi J, Yamada M, Kuno A, Tateno H. Lectin microarrays: concept, principle and applications. Chem Soc Rev. 2013;42:4443–58.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Shimizu T, Taguchi R. Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. J Lipid Res. 2008;49:2678–89.

    Article  CAS  PubMed  Google Scholar 

  • Jang H, Kim TW, Yoon S, Choi SY, Kang TW, Kim SY, Kwon YW, Cho EJ, Youn HD. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell. 2012;11:62–74.

    Article  CAS  PubMed  Google Scholar 

  • Kannagi R, Cochran NA, Ishigami F, et al. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 1983a;2:2355–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kannagi R, Levery SB, Ishigami F, et al. New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J Biol Chem. 1983b;258:8934–42.

    CAS  PubMed  Google Scholar 

  • Kobata A, Endo T. Immobilized lectin columns: useful tools for the fractionation and structural analysis of oligosaccharides. J Chromatogr. 1992;597:111–22.

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Togawa T, Tsukimura T, et al. Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease. PLoS One. 2011;6:e29074.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kornak U, Reynders E, Dimopoulou A, et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat Genet. 2008;40:32–4.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy L, Mahal LK. Glycomic analysis: an array of technologies. ACS Chem Biol. 2009;4:715–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuno A, Uchiyama N, Koseki-Kuno S, et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods. 2005;2:851–6.

    Article  CAS  PubMed  Google Scholar 

  • Lauc G, Essafi A, Huffman JE, et al. Genomics meets glycomics – the first GWAS study of human N-glycome identifies HNF1a as a master regulator of plasma protein fucosylation. PLoS Genet. 2010;6:e1001256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauc G, Huffman JE, Pučić M, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9:e1003225.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence R, Brown JR, Al-Mafraji K, et al. Disease-specific non-reducing end carbohydrate biomarkers for mucopolysaccharidoses. Nat Chem Biol. 2012;8:197–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JB, Kim JM, Kim SJ, et al. Comparative characteristics of three human embryonic stem cell lines. Mol Cells. 2005;19:31–8.

    CAS  PubMed  Google Scholar 

  • Lefeber DJ, Morava E, Jaeken J. How to find and diagnose a CDG due to defective N-glycosylation. J Inherit Metab Dis. 2011;34:849–52.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liang YJ, Kuo HH, Lin CH, et al. Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc Natl Acad Sci U S A. 2010;107:22564–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5:845–56.

    Article  CAS  PubMed  Google Scholar 

  • Ly M, Laremore TN, Linhardt RJ. Proteoglycomics: recent progress and future challenges. OMICS. 2010;14:389–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meany DL, Chan DW. Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics. 2011;8:7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merrill Jr AH, Sullards MC, Allegood JC, et al. Sphingolipidomics: highthroughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods. 2005;36:207–24.

    Article  CAS  PubMed  Google Scholar 

  • Nagano K, Yoshida Y, Isobe T. Cell surface biomarkers of embryonic stem cells. Proteomics. 2008;8:4025–35.

    Article  CAS  PubMed  Google Scholar 

  • Narisada M, Kawamoto S, Kuwamoto K, et al. Identification of an inducible factor secreted by pancreatic cancer cell lines that stimulates the production of fucosylated haptoglobin in hepatoma cells. Biochem Biophys Res Commun. 2008;377:792–6.

    Article  CAS  PubMed  Google Scholar 

  • Natunen S, Satomaa T, Pitkänen V, et al. The binding specificity of the marker antibodies Tra-1-60 and Tra-1-81 reveals a novel pluripotency-associated type 1 lactosamine epitope. Glycobiology. 2011;21:1125–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen JW, Blixt O, Bennett EP, et al. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer. 2011;128:1860–71.

    Article  CAS  PubMed  Google Scholar 

  • Pivac N, Knezević A, Gornik O, et al. Human plasma glycome in attention-deficit hyperactivity disorder and autism spectrum disorders. Mol Cell Proteomics. 2011;10:M110.004200.

    Article  PubMed Central  PubMed  Google Scholar 

  • Saito M, Kitamura H, Sugiyama K. The specificity of monoclonal antibody A2B5 to c-series gangliosides. J Neurochem. 2001;78:64–74.

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Nakata K, Kato Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N Engl J Med. 1993;328:1802–6.

    Article  CAS  PubMed  Google Scholar 

  • Satomaa T, Heiskanen A, Mikkola M, et al. The N-glycome of human embryonic stem cells. BMC Cell Biol. 2009;10:42.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shevinsky LH, Knowles BB, Damjanov I, et al. Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell. 1982;30:697–705.

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Su D, Liu T, et al. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics. 2012;12:1074–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sisu E, Flangea C, Serb A, et al. High-performance separation techniques hyphenated to mass spectrometry for ganglioside analysis. Electrophoresis. 2011;32:1591–609.

    CAS  PubMed  Google Scholar 

  • Smoller JW, Craddock N, et al. Cross-disorder Group of the Psychiatric Genomics Consortium, Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.

    Article  CAS  Google Scholar 

  • Stanta JL, Saldova R, Struwe WB, et al. Identification of N-glycosylation changes in the CSF and serum in patients with schizophrenia. J Proteome Res. 2010;9:4476–89.

    Article  CAS  PubMed  Google Scholar 

  • Sumar N, Bodman KB, Rudd PM. Lectins as indicators of disease-associated glycoforms. In: Gabius H-J, Gabius S, editors. Lectins and glycobiology. New York: Springer Laboratory; 1993. p. 158–74.

    Chapter  Google Scholar 

  • Sun X-L. Cellular glycomics – recent strategies and approaches. J Glycom Lipidom. 2012;2:e105.

    Google Scholar 

  • Tang C, et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol. 2011;29:829–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taniguchi N. Toward cancer biomarker discovery using the glycomics approach. Proteomics. 2008;8:3205–8.

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi N, Honke K, Fukuda M, et al. Handbook of glycosyltransferases and related genes. Tokyo: Springer; 2002. p. 670.

    Book  Google Scholar 

  • Thanabalasingham G, Huffman JE, Kattla JJ, et al. Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes. 2013;62:1329–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Zwaag B, Franke L, Poot M, et al. Gene-network analysis identifies susceptibility genes related to glycobiology in autism. PLoS One. 2009;4:e5324.

    Article  PubMed Central  PubMed  Google Scholar 

  • Volpi N, Galeotti F, Yang B, et al. Analysis of glycosaminoglycan-derived, precolumn, 2-aminoacridone-labeled disaccharides with LC-fluorescence and LC-MS detection. Nat Protoc. 2014;9:541–58.

    Article  CAS  PubMed  Google Scholar 

  • von Mensdorff-Pouilly S, Verstraeten AA, Kenemans P, Snijdewint FGM, Kok A, Van Kamp GJ, Paul MA, van Diest PJ, Meijer S, Hilgers J. Survival in early breast cancer patients is favourably influenced by a natural humoral immune response to polymorphic epithelial mucin. J Clin Oncol. 2000;18:574–83.

    Google Scholar 

  • Wade A, Robinson AE, Engler JR, et al. Proteoglycans and their roles in brain cancer. FEBS J. 2013;280:2399–417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wandall HH, et al. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res. 2010;70:1306–13.

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Huang YL, Ren CT, Lin CW, Hung JT, Yu JC, et al. Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci U S A. 2008;105(33):11661–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang P, Qu J, Wu MZ, et al. “TET-on” pluripotency. Cell Res. 2013;23:863–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuki N, Hartung H-P. Guillain-Barré syndrome. N Eng J Med. 2012;366:2294–304.

    Article  CAS  Google Scholar 

  • Zaia J. Mass spectrometry and glycomics. OMICS. 2010;14:401–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zauner G, Koeleman CA, Deelder AM, et al. Mass spectrometric O-glycan analysis after combined O-glycan release by β-elimination and 1-phenyl-3-methyl-5-pyrazolone labeling. Biochim Biophys Acta. 2012;1820:1420–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yin H, Lu H. Recent progress in quantitative glycoproteomics. Glycoconj J. 2012;29:249–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge research support from the Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuro Shinohara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Shinohara, Y., Furukawa, Ji., Miura, Y. (2014). Glycome as Biomarkers. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7740-8_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7740-8_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7740-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics