Skip to main content

Fetal Membranes: Potential Source of Preterm Birth Biomarkers

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Preterm birth (birth before 37 weeks of complete gestation) is a major pregnancy complication and is the second largest cause of neonatal mortality worldwide. Majority of the preterm births are due to unknown etiologies, and this class of preterm births is known as spontaneous preterm birth (PTB). There are no reliable biomarkers to predict PTB as its causality and pathophysiologic pathways are unclear. Various maternal and fetal intrauterine compartments produce biomarkers that are associated with PTB. However, screening and diagnosis of PTB is difficult due to the overlap between various pathologic events associated with PTB and heterogeneity in biomarker response. Several studies have contributed to our current understanding of the mechanistic role of biomarkers produced by maternal and fetal tissues, but none of them have emerged as diagnostic tools. This chapter reviews knowledge gaps in PTB biomarker literature and discusses some of the fundamental issues associated with biomarker research in PTB. This discussion is based on data generated using human fetal membranes.

Fetal membranes (amniochorionic membranes) are fetally derived tissues and forms the innermost lining of the intra-amniotic cavity. They provide structural integrity to the intrauterine cavity and are capable of responding to various maternal-fetal physiologic and pathophysiologic signals. Reports document hundreds of biomarkers produced by fetal membranes that are associated with various pregnancy complications. However, fetal membrane biomarker response is complex, and the diversity in their response makes it difficult to understand the pathways of PTB. This chapter reviews three distinct scenarios where fetal membrane biomarker signature can vary: (1) type of antigen, (2) type of risk exposure, and (3) the race/ethnicity of the subject from which the membranes are derived. This is to highlight the heterogeneity in fetal membrane biomarkers and demonstrate how pathways can be different based on distinct biomarker signature. Understanding both maternal and fetal biomarker response based on an individual’s own risk profile is needed to tailor interventions to reduce the risk of PTB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

African-Americans

C:

Caucasians

CSE:

Cigarette Smoke Extract

ECM:

Extracellular Matrix

IL:

Interleukins

LPS:

Lipopolysaccharide

pPROM:

Preterm Prelabor Rupture of the Membranes

PTB:

Spontaneous Preterm Birth

References

  • Aplin JD, Campbell S, Foden LJ. Adhesion of human amnion epithelial cells to extracellular matrix. Evidence for multiple mechanisms. Exp Cell Res. 1984;153:425–38.

    Article  CAS  PubMed  Google Scholar 

  • Arad I, Ergaz Z. The fetal inflammatory response syndrome and associated infant morbidity. Isr Med Assoc J. 2004;6:766–9.

    PubMed  Google Scholar 

  • Beck S, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88:31–8.

    Article  PubMed  Google Scholar 

  • Behzad F, et al. Brief communication: sliding displacement of amnion and chorion following controlled laser wounding suggests a mechanism for short-term sealing of ruptured membranes. Placenta. 1994;15:775–8.

    Article  CAS  PubMed  Google Scholar 

  • Bell SC, Malak TM. Formation of the chorio-decidual interface of human fetal membranes. Is it analogous to anchoring villi development in the placenta? Ann N Y Acad Sci. 1994;734:166–8.

    Article  CAS  PubMed  Google Scholar 

  • Bourne GL. The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol. 1960;79:1070–3.

    Article  CAS  PubMed  Google Scholar 

  • Bourne GL, Lacy D. Ultra-structure of human amnion and its possible relation to the circulation of amniotic fluid. Nature. 1960;186:952–4.

    Article  CAS  PubMed  Google Scholar 

  • Brou L, Almli L, Drobek C, Bhat G, Pearce B, Fortunato SJ, Menon R. Dysregulated biomarkers induce distinct pathways in preterm birth. BJOG. 2012;119:458–73.

    Article  CAS  PubMed  Google Scholar 

  • Bryant-Greenwood GD. The extracellular matrix of the human fetal membranes: structure and function. Placenta. 1998;19:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Chaiworapongsa T, et al. Evidence for fetal involvement in the pathologic process of clinical chorioamnionitis. Am J Obstet Gynecol. 2002;186:1178–82.

    Article  PubMed  Google Scholar 

  • Chaiworapongsa T, et al. The role of granulocyte colony-stimulating factor in the neutrophilia observed in the fetal inflammatory response syndrome. J Perinat Med. 2011;39:653–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El KM, et al. Fetal membranes from term vaginal deliveries have a zone of weakness exhibiting characteristics of apoptosis and remodeling. J Soc Gynecol Investig. 2006;13:191–5.

    Article  Google Scholar 

  • Fortunato SJ, Menon R, Swan KF. Expression of TNF-a and TNF-R p55 in cultured amniochorionic membrane. Am J Reprod Immunol. 1994a;32:188–93.

    Article  CAS  PubMed  Google Scholar 

  • Fortunato SJ, Menon R, Swan KF, Lyden TW. Organ culture of amniochorionic membrane in vitro. Am J Reprod Immunol. 1994b;32:184–7.

    Article  CAS  PubMed  Google Scholar 

  • Fortunato SJ, et al. Release of inflammatory cytokines (IL-1, IL-6, IL-8, and TNF-a) from human fetal membranes in response to endotoxic lipopolysaccharide mimics amniotic fluid concentrations. Am J Obstet Gynecol. 1996a;174:1855–62.

    Article  CAS  PubMed  Google Scholar 

  • Fortunato SJ, Menon RP, Swan KF, Menon R. Inflammatory cytokine (interleukins 1, 6 and 8 and tumor necrosis factor-alpha) release from cultured human fetal membranes in response to endotoxic lipopolysaccharide mirrors amniotic fluid concentrations. Am J Obstet Gynecol. 1996b;174:1855–61.

    Article  CAS  PubMed  Google Scholar 

  • Galinsky R, et al. The consequences of chorioamnionitis: preterm birth and effects on development. J Pregnancy. 2013;2013:412831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldenberg RL, Andrews WW, Hauth JC. Choriodecidual infection and preterm birth. Nutr Rev. 2002;60:S19–25.

    Article  PubMed  Google Scholar 

  • Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.

    Article  PubMed  Google Scholar 

  • Goldenberg RL, et al. The preterm birth syndrome: issues to consider in creating a classification system. Am J Obstet Gynecol. 2012;206:113–8.

    Article  PubMed  Google Scholar 

  • Gomez-Lopez N, et al. Specific inflammatory microenvironments in the zones of the fetal membranes at term delivery. Am J Obstet Gynecol. 2011;205:235–24.

    Article  PubMed  Google Scholar 

  • Gotsch F, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50:652–83.

    Article  PubMed  Google Scholar 

  • Gotsch F, et al. The anti-inflammatory limb of the immune response in preterm labor, intra-amniotic infection/inflammation, and spontaneous parturition at term: a role for interleukin-10. J Matern Fetal Neonatal Med. 2008;21:529–47.

    Article  CAS  PubMed  Google Scholar 

  • Hay ED. Extracellular matrix. J Cell Biol. 1981;91:205s–23.

    Article  CAS  PubMed  Google Scholar 

  • Kacerovsky M, et al. The fetal inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med. 2013a;26:795–801.

    Article  CAS  PubMed  Google Scholar 

  • Kacerovsky M, et al. Proteomic biomarkers for spontaneous preterm birth: a systematic review of the literature. Reprod Sci. 2013b;21:283–95.

    Article  PubMed  Google Scholar 

  • Kanayama N, et al. Collagen types in normal and prematurely ruptured amniotic membranes. Am J Obstet Gynecol. 1985;153:899–903.

    Article  CAS  PubMed  Google Scholar 

  • Kramer MS, et al. Challenges in defining and classifying the preterm birth syndrome. Am J Obstet Gynecol. 2012;206:108–12.

    Article  PubMed  Google Scholar 

  • Kumar D, Novince R, et al. A new methodology to measure strength of adherence of the fetal membrane components, amnion and the choriodecidua. Placenta. 2009;30:560–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SE, et al. Funisitis in term pregnancy is associated with microbial invasion of the amniotic cavity and intra-amniotic inflammation. J Matern Fetal Neonatal Med. 2006;19:693–7.

    Article  PubMed  Google Scholar 

  • Malak TM, Bell SC. Structural characteristics of term human fetal membranes: a novel zone of extreme morphological alteration within the rupture site. Br J Obstet Gynaecol. 1994;101:375–86.

    Article  CAS  PubMed  Google Scholar 

  • Malak TM, et al. Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta. 1993;14:385–406.

    Article  CAS  PubMed  Google Scholar 

  • Mazor M, et al. The biomolecular mechanisms of preterm labor in women with intrauterine infection. Isr J Med Sci. 1994;30:317–22.

    CAS  PubMed  Google Scholar 

  • Menon R, Fortunato SJ. Infection and the role of inflammation in preterm premature rupture of the membranes. Best Pract Res Clin Obstet Gynaecol. 2007;21:467–78.

    Article  PubMed  Google Scholar 

  • Menon R, Fortunato SJ. Distinct pathophysiologic pathways induced by in vitro infection and cigarette smoke in normal human fetal membranes. Am J Obstet Gynecol. 2009;200:334–8.

    Article  PubMed  Google Scholar 

  • Menon R, et al. Salivary proteinase activity: a potential biomarker for preterm premature rupture of the membranes. Am J Obstet Gynecol. 2006;194:1609–15.

    Article  CAS  PubMed  Google Scholar 

  • Menon R, et al. Racial disparity in pathophysiologic pathways of preterm birth based on genetic variants. Reprod Biol Endocrinol. 2009a;7:62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menon R, Peltier MR, Eckardt J, Fortunato SJ. Diversity in cytokine response to bacteria associated with preterm birth by fetal membranes. Am J Obstet Gynecol. 2009b;201:306.

    Article  PubMed  Google Scholar 

  • Menon R, et al. Association of genetic variants, ethnicity and preterm birth with amniotic fluid cytokine concentrations. Ann Hum Genet. 2010a;74:165–83.

    Article  CAS  PubMed  Google Scholar 

  • Menon R, Taylor RN, Fortunato SJ. Chorioamnionitis–a complex pathophysiologic syndrome. Placenta. 2010b;31:113–20.

    Article  CAS  PubMed  Google Scholar 

  • Menon R, et al. Cigarette smoke induces oxidative stress and apoptosis in normal term fetal membranes. Placenta. 2011a;32:317–22.

    Article  CAS  PubMed  Google Scholar 

  • Menon R, et al. Biomarkers of spontaneous preterm birth: an overview of the literature in the last four decades. Reprod Sci. 2011b;18:1046–70.

    Article  PubMed  Google Scholar 

  • Mittendorf R, et al. Special relationships between fetal inflammatory response syndrome and bronchopulmonary dysplasia in neonates. J Perinat Med. 2005;33:428–34.

    Article  PubMed  Google Scholar 

  • Musilova I, et al. The fetal splenic vein flow pattern and fetal inflammatory response in the preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2013;27:770–4.

    Article  PubMed  Google Scholar 

  • Oh SY, et al. Fetal plasma cortisol and dehydroepiandrosterone sulfate concentrations in pregnancy and term parturition. J Matern Fetal Neonatal Med. 2006;19:529–36.

    Article  CAS  PubMed  Google Scholar 

  • Pacora P, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med. 2002;11:18–25.

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Park CW, Lockwood CJ, Norwitz ER. Role of cytokines in preterm labor and birth. Minerva Ginecol. 2005;57:349–66.

    CAS  PubMed  Google Scholar 

  • Romero R, et al. The preterm parturition syndrome. BJOG. 2006;113(Suppl 3):17–42.

    Article  CAS  PubMed  Google Scholar 

  • Romero R, et al. Hematologic profile of the fetus with systemic inflammatory response syndrome. J Perinat Med. 2011;40:19–32.

    PubMed  PubMed Central  Google Scholar 

  • Romero R, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med. 2012a;25:558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero R, et al. Blood pH and gases in fetuses in preterm labor with and without systemic inflammatory response syndrome. J Matern Fetal Neonatal Med. 2012b;25:1160–70.

    Article  CAS  PubMed  Google Scholar 

  • Skinner SJ, Campos GA, Liggins GC. Collagen content of human amniotic membranes: effect of gestation length and premature rupture. Obstet Gynecol. 1981;57:487–9.

    CAS  PubMed  Google Scholar 

  • Strohl A, et al. Decreased adherence and spontaneous separation of fetal membrane layers–amnion and choriodecidua–a possible part of the normal weakening process. Placenta. 2010;31:18–24.

    Article  CAS  PubMed  Google Scholar 

  • Svigos JM. The fetal inflammatory response syndrome and cerebral palsy: yet another challenge and dilemma for the obstetrician. Aust N Z J Obstet Gynaecol. 2001;41:170–6.

    Article  CAS  PubMed  Google Scholar 

  • Vadillo-Ortega F, et al. Human amniotic fluid modulation of collagenase production in cultured fibroblasts. A model of fetal membrane rupture. Am J Obstet Gynecol. 1991;164:664–8.

    Article  CAS  PubMed  Google Scholar 

  • Vadillo-Ortega F, et al. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor. Am J Pathol. 1995;146:148–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vadillo-Ortega F, et al. Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. Am J Obstet Gynecol. 1996;174:1371–6.

    Article  CAS  PubMed  Google Scholar 

  • Villar J, et al. The preterm birth syndrome: a prototype phenotypic classification. Am J Obstet Gynecol. 2012;206:119–23.

    Article  PubMed  Google Scholar 

  • Vora S, et al. Nuclear factor-kappa B localization and function within intrauterine tissues from term and preterm labor and cultured fetal membranes. Reprod Biol Endocrinol. 2010;8:8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams SM, Velez DR, Menon R. Geographic ancestry and markers of preterm birth. Expert Rev Mol Diagn. 2010;10:27–32.

    Article  PubMed  Google Scholar 

  • Yoon BH, et al. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol. 2000;183:1124–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkumar Menon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Menon, R., Nicolau, N.N., Bredson, S., Polettini, J. (2015). Fetal Membranes: Potential Source of Preterm Birth Biomarkers. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_28

Download citation

Publish with us

Policies and ethics