Skip to main content

Vitamin D: Biological Significance and Diagnosis of Mild Deficiency

  • Reference work entry
  • First Online:
  • 1240 Accesses

Abstract

Activated vitamin D has a main role in bone metabolism by increasing intestinal calcium absorption and kidney calcium resorption but also by activating both bone formation and resorption. This last effect may be mainly indirect by modulating PTH secretion. In mild forms of vitamin D deficiency, the increase in PTH secretion is probably the main factor determining bone loss.

In diagnosis of vitamin D deficiency, the establishment of a circulating vitamin D (mono or di-hydroxylated vitamin D) cutoff is particularly important but has been difficult because differences in used criteria. Based on PTH circulating levels and femoral neck bone density, a mono-hydroxylated vitamin D cutoff of 25 ng/ml may be the best criterion for distinguishing a mild vitamin D deficiency.

Vitamin D action is not limited to bone metabolism but involves modulation of immune function, stimulation of insulin, and other hormone secretion and inhibition of cell proliferation. Epidemiological studies have correlated low vitamin D levels to increased prevalence of some forms of cancer (mainly colon cancer but also breast and prostate cancer), type II diabetes, some autoimmune disorders, and cardiovascular diseases. However, in all these conditions, with a few exceptions, trials using high doses of vitamin D have been unsuccessful. The possibility that in nonskeletal diseases, different criteria for determining a vitamin D deficiency should be used is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Activated vitamin D:

1,25(OH)2-vitamin D

PTH:

Parathyroid hormone

VDR:

Vitamin D receptor

CaM:

Calmodulin

BBMI:

Brush border myosin I

CaBP:

Calbindin

TRPV6:

Calcium channel 6

CaSR:

Calcium sensing receptor

RIA:

Radioimmunoassay

DEXA:

Dual-energy X-ray absorptiometry

DC:

Dendritic cells

Th cells:

T helper cells

References

  • Adorini L, Penna G. Control of autoimmune diseases by the vitamin D endocrine system. Nat Clin Pract Rheumatol. 2008;4:404–12.

    Article  CAS  PubMed  Google Scholar 

  • Avenell A, Cook JA, MacLennan GS, et al. Vitamin D supplementation and type 2 diabetes: a substudy of a randomized placebo-controlled trial in older people (RECORD trial, ISRCTN 51647438). Age Ageing. 2009;38:606–9.

    Article  PubMed  Google Scholar 

  • Biber J, Hernando N, Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–50.

    Article  CAS  PubMed  Google Scholar 

  • Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev. 2014;1:CD007470.

    Google Scholar 

  • Bikle DD. Regulation of intestinal calcium transport by vitamin D [1, 25(OH)2]: role of membrane structure. In: Aloia RC, Curtain CC, Gordon LM, editors. Membrane transport and information storage. New York: Wiley-Liss; 1990. p. 191–219.

    Google Scholar 

  • Bikle DD. Vitamin D, and the skin: physiology and pathophysiology. Rev Endocr Metab Disord. 2012;13:3–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojesen SE, Nordestgaard BG. Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and metaanalysis. Clin Chem. 2013;59:381–91.

    Article  PubMed  Google Scholar 

  • Carlberg C, Campbell MJ. Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids. 2013;78:127–36.

    Article  CAS  PubMed  Google Scholar 

  • Carmina E, Stanczyk F, Lobo RA. Chapter 34. Laboratory assessment. In: Strauss JF, Barbieri RL, editors. Yen and Jaffe’s reproductive endocrinology: physiology, pathophysiology and clinical management. 7th ed. Philadelphia: Elsevier-Saunders; 2014. p. 822–50.

    Chapter  Google Scholar 

  • Chowdhury R, Kunutsor S, Vitezova A, et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomized intervention studies. BMJ. 2014;348:g1903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cipriani C, Piemonte S, Cilli M, et al. Update on vitamin D: pros and cons. Clin Cases Miner Bone Metab. 2015;12:222–3.

    PubMed  PubMed Central  Google Scholar 

  • de Boer IH, Tinker LF, Connelly S, et al. Calcium plus vitamin D supplementation and the risk of incident diabetes in the Women’s Health Initiative. Diabetes Care. 2008;31:701–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80:1689S–96.

    CAS  PubMed  Google Scholar 

  • Demay MB, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1992;89:8097–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastell R, Hannon RA. Biomarkers of bone health and osteoporosis risk. J Am Diet Assoc. 2011;111:524–7.

    Article  Google Scholar 

  • Forman JP, Curhan GC, Taylor EN. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension among young women. Hypertension. 2008;52:828–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forouhi NG, Luan J, Cooper A, et al. Baseline serum 25-hydroxy vitamin d is predictive of future glycemic status and insulin resistance: the Medical Research Council Ely Prospective Study 1990–2000. Diabetes. 2008;57:2619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman PA, Gesek FA. Cellular calcium transport in renal epithelia: measurement, mechanisms, and regulation. Physiol Rev. 1995;75:429–71.

    CAS  PubMed  Google Scholar 

  • Froicu M, et al. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. Mol Endocrinol. 2003;17:2386–92.

    Article  CAS  PubMed  Google Scholar 

  • Hawa NS, O’Riordan JL, Farrow SM. Functional analysis of vitamin D response elements in the parathyroid hormone gene and a comparison with the osteocalcin gene. Biochem Biophys Res Commun. 1996;228:352–7.

    Article  CAS  PubMed  Google Scholar 

  • Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev. 2005;85:373–422.

    Article  CAS  PubMed  Google Scholar 

  • Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    Article  CAS  PubMed  Google Scholar 

  • Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. 2011 dietary reference intakes for calcium and vitamin D. Washington, DC: National Academies Press; 2011.

    Google Scholar 

  • Jacobs ET, Kohler LN, Kunihiro AG, et al. Vitamin D and colorectal, breast, and prostate cancers: a review of the epidemiological evidence. J Cancer. 2016;7:232–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadowaki S, Norman AW. Demonstration that the vitamin D metabolite 1,25(OH)2-vitamin D3 and not 24R,25(OH)2-vitamin D3 is essential for normal insulin secretion in the perfused rat pancreas. Diabetes. 1985;34:315–20.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, et al. 1,25-dihydroxyvitamin D3 and pancreatic beta-cell function: vitamin D receptors, gene expression, and insulin secretion. Endocrinology. 1994;134:1602–10.

    Article  CAS  PubMed  Google Scholar 

  • Liu SM, et al. Characterization of a response element in the 5′-flanking region of the avian (chicken) PTH gene that mediates negative regulation of gene transcription by 1,25-dihydroxyvitamin D3 and binds the vitamin D3 receptor. Mol Endocrinol. 1996;10:206–15.

    CAS  PubMed  Google Scholar 

  • Looker AC, Mussolino ME. Serum 25-hydroxyvitamin D and hip fracture risk in older U.S. white adults. J Bone Miner Res. 2008;23:143–50.

    Article  CAS  PubMed  Google Scholar 

  • Maalmi H, Ordonez-Mena JM, Schottker B, et al. Serum 25-hydroxyvitamin D levels and survival in colorectal and breast cancer patients: systematic review and meta-analysis of prospective cohort studies. Eur J Cancer. 2014;50:1510–21.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Yokoyama K, Yokoo T, et al. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes. 2016;7:89–100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Napoli N, Strollo R, Sprini D, et al. Serum 25-OH Vitamin D in relation to bone mineral density and bone turnover. Int J Endocrinol. 2014;2014:487463.

    PubMed  PubMed Central  Google Scholar 

  • Panda DK, et al. Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem. 2004;279:16754–66.

    Article  CAS  PubMed  Google Scholar 

  • Pittas AG, Chung M, Trikalinos T, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152:307–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabinovitch A, et al. Expression of calbindin-D (28k) in a pancreatic islet beta-cell line protects against cytokine-induced apoptosis and necrosis. Endocrinology. 2001;142(8):3649–55.

    Article  CAS  PubMed  Google Scholar 

  • Rosen CJ, Adams JS, Bikle DD, et al. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev. 2012;33:456–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know? J Clin Endocrinol Metab. 2011;96:53–8.

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Takahashi N, Abe E. Role of vitamin D in bone resorption. J Cell Biochem. 1992;49:53–8.

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, et al. Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology. 1999;140:1005–8.

    Article  CAS  PubMed  Google Scholar 

  • Touvier M, Chan DS, Lau R, et al. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2011;20:1003–16.

    Article  CAS  PubMed  Google Scholar 

  • Tretli S, Schwartz GG, Torjesen PA, et al. Serum levels of 25-hydroxyvitamin D and survival in Norwegian patients with cancer of breast, colon, lung, and lymphoma: a population-based study. Cancer Causes Control. 2012;23:363–70.

    Article  PubMed  Google Scholar 

  • Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1984;246:E493–8.

    CAS  PubMed  Google Scholar 

  • van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97:93–101.

    Article  PubMed  Google Scholar 

  • Wang J, Eliassen AH, Spiegelman D, et al. Plasma free 25-hydroxyvitamin D, vitamin D binding protein, and risk of breast cancer in the Nurses’ Health Study II. Cancer Causes Control. 2014;25:819–27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Manson JE, Song Y. Systematic review: vitamin D and calcium supplementation in prevention of cardiovascular events. Ann Intern Med. 2010;152:315–23.

    Article  PubMed  Google Scholar 

  • Wasserman RH, Fullmer CS. Vitamin D and intestinal calcium transport: facts, speculations and hypotheses. J Nutr. 1995;125 7 Suppl:1971S–9.

    Google Scholar 

  • Yin L, Grandi N, Raum E, et al. Meta-analysis: serum vitamin D and breast cancer risk. Eur J Cancer. 2010;46:2196–205.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Shao X, Yao Y, et al. Positive association between circulating 25-hydroxyvitamin D levels and prostate cancer risk: new findings from an updated meta-analysis. J Cancer Res Clin Oncol. 2014;140:1465–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Carmina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Carmina, E. (2017). Vitamin D: Biological Significance and Diagnosis of Mild Deficiency. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_49

Download citation

Publish with us

Policies and ethics