Advertisement

Subchondral Bone Features and Mechanical Properties as Biomarkers of Osteoarthritis

  • James D. Johnston
  • Wadena D. Burnett
  • Saija A. Kontulainen
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Osteoarthritis (OA) is a painful, debilitating disease most characterized by cartilage degeneration at joint surfaces. In addition to cartilage degeneration, OA is marked by bony changes including attrition, osteophyte formation, cyst presence, bone marrow lesions, altered shape, as well as altered density and mechanical properties of underlying subchondral bone. As subchondral bone is densely innervated, it may be a plausible site of debilitating pain associated with OA. However, the role of subchondral bone in OA pathogenesis and pain remains unclear. Medical imaging offers the ability to quantitatively characterize and monitor subchondral bone properties in vivo in people living with OA and investigate changes in relation to clinical OA symptoms. Incorporating medical imaging data with computational finite element modeling enables study of bone mechanical properties in the OA affected joint. These imaged-based biomarkers have potential to elucidate the mechanism underpinning OA pain and clarify the role of mechanical loading in OA pathogenesis. By characterizing and monitoring subchondral bone features and mechanical properties, image-based biomarkers provide unique, noninvasive avenues to improve our understanding of OA initiation, progress, and treatment. This chapter will summarize recent evidence of associations between subchondral bone features and mechanical properties as biomarkers of OA onset, progression, and pain initiation.

Keywords

Osteoarthritis Subchondral bone Imaging MRI CT BMD BML 

List of Abbreviations

2D

Two dimensional

3D

Three dimensional

BMC

Bone mineral content (g)

BMD

Bone mineral density (g/cm2 with DXA, g/cm3 with QCT)

CT

Computed tomography

DXA

Dual energy x-ray absorptiometry, same as DEXA

E

Elastic modulus or Young’s modulus (MPa)

FE

Finite element

FSA

Fractal signature analysis

HU

Hounsfield unit

MRI

Magnetic resonance imaging

OA

Osteoarthritis

pQCT

Peripheral Quantitative computed tomography

QCT

Quantitative computed tomography

RA

Rheumatoid arthritis

ROI

Region of interest

References

  1. Agricola R, Heijboer MP, et al. Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK). Ann Rheum Dis. 2013;72(6):918–23.PubMedCrossRefGoogle Scholar
  2. Ai F, Yu C, et al. MR imaging of knee osteoarthritis and correlation of findings with reported patient pain. J Huazhong Univ Sci Technolog. 2010;30(2):248–54.CrossRefGoogle Scholar
  3. Akamatsu Y, Mitsugi N, et al. Medial versus lateral condoyle bone mineral density ratios in a cross-sectional study: a potential marker for medial knee osteoarthritis severity. Arthritis Care Res. 2012;64(7):1036–45.Google Scholar
  4. Amini M, Nazemi M, et al. Individual and combined effects of OA-related subchondral bone alterations on proximal tibial stiffness: a parametric finite element modeling study. Med Eng Phys. 2015;37(8):783–91.Google Scholar
  5. Anderson MJ, Keyak JH, et al. Compressive mechanical properties of human cancellous bone after gamma irradiation. J Bone Joint Surg Am. 1992;74(5):747–52.PubMedCrossRefGoogle Scholar
  6. Arjmand H, Nazemi M, et al. Precision and preliminary comparison of subchondral bone mechanical properties at the proximal tibia from normal and osteoarthritic knees. Understanding crosstalk between cartilage and bone research symposium, Chicago; 2016.Google Scholar
  7. Bailey AJ, Mansell JP, et al. Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology. 2004;41(3–4):349–58.PubMedGoogle Scholar
  8. Bauer JS, Link TM. Advances in osteoporosis imaging. Eur J Radiol. 2009;71(3):440–9.PubMedCrossRefGoogle Scholar
  9. Bay BK. Methods and applications of digital volume correlation. J Strain Anal Eng Des. 2008;43(8):745–60.CrossRefGoogle Scholar
  10. Bennell KL, Creaby MW, et al. Tibial subchondral trabecular volumetric bone density in medial knee joint osteoarthritis using peripheral quantitative computed tomography technology. Arthritis Rheum. 2008;58(9):2776–85.PubMedCrossRefGoogle Scholar
  11. Beuf O, Ghosh S, et al. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum. 2002;46(2):385–93.PubMedCrossRefGoogle Scholar
  12. Bjurholm A, Kreicbergs A, et al. Substance P- and CGRP-immunoreactive nerves in bone. Peptides. 1988;9:165–71.PubMedCrossRefGoogle Scholar
  13. Boegard T, Rudling O, et al. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the patellofemoral joint. Ann Rheum Dis. 1998a;57:395–400.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Boegard T, Rudling O, et al. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis. 1998b;57:401–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bolbos RI, Zuo J, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16(10):1150–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brown TD, Radin EL, et al. Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech. 1984;17(1):11–24.PubMedCrossRefGoogle Scholar
  17. Bullough PG. Osteoarthritis and related disorders: pathology. In: Klippel JH, Dieppe P, editors. Rheumatology. 2nd ed. London: Mosby; 1998. p. 8.8.1–8.Google Scholar
  18. Burnett WD, Kontulainen SA, et al. Regional depth-specific subchondral bone density measures in osteoarthritic and normal patellae: in vivo precision and preliminary comparisons. Osteoporos Int. 2014;25(3):1107–14.PubMedCrossRefGoogle Scholar
  19. Burnett WD, Kontulainen SA, et al. Knee osteoarthritis patients with severe nocturnal pain have altered proximal tibial subchondral bone mineral density. Osteoarthritis Cartilage. 2015;23(9):1483–90.Google Scholar
  20. Burnett W, Kontulainen S, et al. Patella bone density is lower in knee osteoarthritis patients experiencing moderate-to-severe pain at rest. J Musculoskelet Neuronal Interact. 2016a;16(1):33–9.Google Scholar
  21. Burnett W, Kontulainen S, et al. Proximal tibial trabecular bone mineral density is related to pain in patients with osteoarthritis. Osteoarthritis Cartilage. 2016b; (in press).Google Scholar
  22. Burr DB. The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol. 1998;10(3):256–62.PubMedCrossRefGoogle Scholar
  23. Burr DB, Radin EL. Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am. 2003;29(4):675–85.PubMedCrossRefGoogle Scholar
  24. Burr DB, Schaffler MB. The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech. 1997;37(4):343–57.PubMedCrossRefGoogle Scholar
  25. Castellano G, Bonilha L, et al. Texture analysis of medical images. Clin Radiol. 2004;59(12):1061–9.PubMedCrossRefGoogle Scholar
  26. Chang CB, Han I, et al. Association between radiological findings and symptoms at the patellofemoral joint in advanced knee osteoarthritis. J Bone Joint Surg (Br). 2007;89-B:1324–8.CrossRefGoogle Scholar
  27. Chang CB, Koh IJ, et al. The radiographic predictors of symptom severity in advanced knee osteoarthritis with varus deformity. Knee. 2011;18:456–60.PubMedCrossRefGoogle Scholar
  28. Chappard C, Peyrin F, et al. Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthritis Cartilage. 2006;14(3):215–23.PubMedCrossRefGoogle Scholar
  29. Cicuttini FM, Jones G, et al. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63(9):1124–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Clarke S, Wakeley C, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee. Skeletal Radiol. 2004;33(10):588–95.PubMedCrossRefGoogle Scholar
  31. Day JS, Ding M, et al. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19(5):914–8.PubMedCrossRefGoogle Scholar
  32. Dieppe PA, Cushnaghan J, et al. The Bristol “OA 500” study: progression of osteoarthritis (OA) over 3 years and the relationship between clinical and radiographic changes at the knee joint. Osteoarthritis Cartilage. 1997;5:87–97.PubMedCrossRefGoogle Scholar
  33. Dieppe PA, Reichenbach S, et al. Assessing bone loss on radiographs of the knee in osteoarthritis. Arthritis Rheum. 2005;52(11):3536–41.PubMedCrossRefGoogle Scholar
  34. Ding M, Danielsen CC, et al. Bone density does not reflect mechanical properties in early-stage arthrosis. Acta Orthop Scand. 2001;72(2):181–5.PubMedCrossRefGoogle Scholar
  35. Ding C, Martel-Pelletier J, et al. Two-year prospective longitudinal study exploring the factors associated with change in femoral cartilage volume in a cohort largely without knee radiographic osteoarthritis. Osteoarthritis Cartilage. 2008;16(4):443–9.PubMedCrossRefGoogle Scholar
  36. Dore D, Quinn S, et al. Natural history and clinical significance of MRI-detected bone marrow lesions at the knee: a prospcetive study in community dwelling older adults. Arthritis Res Ther. 2010;12:R223.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Driban JB, Price LL, et al. Evaluation of bone marrow lesion volume as a knee osteoarthritis biomarker – longitudinal relationships with pain and structural changes: data from the osteoarthritis initiative. Arthritis Res Ther. 2013;15(5):R112.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Durr HD, Martin H, et al. The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop Scand. 2004;75(5):554–8.PubMedCrossRefGoogle Scholar
  39. Dye SF, Vaupel GL. The pathophysiology of patellofemoral pain. Sports Med Arthrosc Rev. 1994;2:203–10.CrossRefGoogle Scholar
  40. El-Sherif HE, Kamal R, et al. Hand osteoarthritis and bone mineral density in postmenopausal women; clinical relevance to hand function, pain and disability. Osteoarthritis Cartilage. 2008;16(1):12–7.PubMedCrossRefGoogle Scholar
  41. Everhart JS, Siston RA, et al. Tibiofemoral subchondral surface ratio (SSR) is a predictor of osteoarthritis symptoms and radiographic progression: data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage. 2014;22(6):771–8.PubMedCrossRefGoogle Scholar
  42. Fang J, Gong H, et al. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments. Biomed Eng Online. 2013;12:130.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Felson DT, Lawrence RC, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133(8):635–46.PubMedCrossRefGoogle Scholar
  44. Felson DT, Chaisson CE, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134(7):541–9.PubMedCrossRefGoogle Scholar
  45. Finlay JB, Bourne RB, et al. Stiffness of bone underlying the tibial plateaus of osteoarthritic and normal knees. Clin Orthop Relat Res. 1989;247:193–201.Google Scholar
  46. Fondi C, Franchi A. Definition of bone necrosis by the pathologist. Clin Cases Miner Bone Metab. 2007;4(1):21–6.PubMedPubMedCentralGoogle Scholar
  47. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219(1):1–9.PubMedCrossRefGoogle Scholar
  48. Gelse K, Soder S, et al. Osteophyte development – molecular characterization of differentiation stages. Osteoarthritis Cartilage. 2003;11:141–8.PubMedCrossRefGoogle Scholar
  49. Grynpas MD, Alpert B, et al. Subchondral bone in osteoarthritis. Calcif Tissue Int. 1991;49(1):20–6.PubMedCrossRefGoogle Scholar
  50. Guermazi A, Zaim S, et al. MR findings in knee osteoarthritis. Eur Radiol. 2003;13(6):1370–86.PubMedGoogle Scholar
  51. Harrison LC, Nikander R, et al. MRI texture analysis of femoral neck: detection of exercise load-associated differences in trabecular bone. J Magn Reson Imaging. 2011;34(6):1359–66.PubMedCrossRefGoogle Scholar
  52. Haugen IK, Boyesen P, et al. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarhtritis. Ann Rheum Dis. 2012;71:899–904.PubMedCrossRefGoogle Scholar
  53. Haverkamp DJ, Schiphof D, et al. Variation in joint shape of osteoarthritic knees. Arthritis Rheum. 2011;63(11):3401–7.PubMedCrossRefGoogle Scholar
  54. Hayashi D, Xu L, et al. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis. Musculoskelet Imaging. 2012;263(1):206–15.Google Scholar
  55. Hayes CW, Jamadar DA, et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology. 2005;237(3):998–1007.PubMedCrossRefGoogle Scholar
  56. Helgason B, Perilli E, et al. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech (Bristol, Avon). 2008;23(2):135–46.CrossRefGoogle Scholar
  57. Imhof H, Breitenseher M, et al. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging. 1999;10(3):180–92.PubMedCrossRefGoogle Scholar
  58. Intema F, Thomas TP, et al. Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis. Osteoarthritis Cartilage. 2011;19(6):668–75.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ip S, Sayre EC, et al. Frequency of bone marrow lesions and association with pain severity: results from a population-based symptomatic knee cohort. J Rheumatol. 2011;38:1079–85.PubMedCrossRefGoogle Scholar
  60. Javaid MK, Kiran A, et al. Individual magentic resonance imaging and radiographic features of knee osteoarthritis in subjects with unilateral knee pain. Arthritis Rheum. 2012;64(10):3246–55.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Johnston JD, Masri BA, et al. Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings. Osteoarthritis Cartilage. 2009;17(10):1319–1326.Google Scholar
  62. Johnston JD, Kontulainen SA, et al. A comparison of conventional maximum intensity projection to a new depth specific topographic mapping technique in the CT analysis of proximal tibial subchondral bone density. Skeletal Radiol. 2010;39(9):10.CrossRefGoogle Scholar
  63. Johnston JD, Kontulainen SA, et al. Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae. Clin Biomech (Bristol, Avon). 2011;26(10):1012–8.CrossRefGoogle Scholar
  64. Kalichman L, Zhang Y, et al. The association between patellar alignment and patellofemoral joint osteoarthritis features – an MRI study. Rheumatology (Oxford). 2007;46(8):1303–8.CrossRefGoogle Scholar
  65. Karvonen RL, Miller PR, et al. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol. 1998;25(11):2187–94.PubMedGoogle Scholar
  66. Keyak JH, Rossi SA. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech. 2000;33(2):209–14.PubMedCrossRefGoogle Scholar
  67. Kinds MB, Marijnissen ACA, et al. Quantitative radiographic features of early knee osteoarthritis: development over 5 years and relationship with symptoms in the CHECK Cohort. J Rheumatol. 2013;40(1):58–65.PubMedCrossRefGoogle Scholar
  68. Kornaat PR, Bloem JL, et al. Osteoarthritis of the knee: association between clinical findings and MR imaging findings. Radiology. 2006;239(3):811–7.PubMedCrossRefGoogle Scholar
  69. Kornaat PR, Kloppenburg M, et al. Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features. Eur Radiol. 2007;17(12):3073–8.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol. 2003;15(5):628–33.PubMedCrossRefGoogle Scholar
  71. Li B, Aspden RM. Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res. 1997a;12(4):641–51.PubMedCrossRefGoogle Scholar
  72. Li B, Aspden RM. Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis. 1997b;56(4):247–54.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lindsey CT, Narasimhan A, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12(2):86–96.PubMedCrossRefGoogle Scholar
  74. Link TM, Steinbach LS, et al. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003;226:373–81.PubMedCrossRefGoogle Scholar
  75. Lo GH, Zhang Y, et al. The ratio of medial to lateral tibial plateau bone mineral density and compartment-specific tibiofemoral osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):984–90.PubMedCrossRefGoogle Scholar
  76. Lo GH, McAlindon TE, et al. Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage. 2009;17(12):1562–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lowitz T, Museyko O, et al. Bone marrow lesions identified by MRI in knee osteoarthritis are associated with locally increased bone mineral density measured by QCT. Osteoarthritis Cartilage. 2013;21(7):957–64.PubMedCrossRefGoogle Scholar
  78. MacKay JW, Godley KC, et al. MRI signal-based quantification of subchondral bone at the tibial plateau: a population study. Skeletal Radiol. 2014;43(11):1567–75.PubMedCrossRefGoogle Scholar
  79. MacKay JW, Murray PJ, et al. Quantitative analysis of tibial subchondral bone: texture analysis outperforms conventional trabecular microarchitecture analysis. J Magn Reson Imaging. 2016;43(5):1159–70.PubMedCrossRefGoogle Scholar
  80. MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42(6):1203–13.PubMedCrossRefGoogle Scholar
  81. Madry H, van Dijk CN, et al. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):419–33.PubMedCrossRefGoogle Scholar
  82. Madsen OR, Schaadt O, et al. Bone mineral distribution of the proximal tibia in gonarthrosis assessed in vivo by photon absorption. Osteoarthritis Cartilage. 1994;2(2):141–7.PubMedCrossRefGoogle Scholar
  83. Mansell JP, Bailey AJ. Abnormal cancellous bone collagen metabolism in osteoarthritis. J Clin Invest. 1998;101(8):1596–603.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Marques J, Genant HK, et al. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI. Magn Reson Med. 2013;70(2):568–75.PubMedCrossRefGoogle Scholar
  85. McAlindon TE, Snow S, et al. Radiographic patterns of osteoarthritis in the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis. 1992;51:844–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. McErlain DD, Milner JS, et al. Subchondral cysts create increased intra-osseous stress in early knee OA: a finite element analysis using simulated lesions. Bone. 2011;48(3):639–46.PubMedCrossRefGoogle Scholar
  87. McErlain DD, Ulici V, et al. An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis. Arthritis Res Ther. 2012;14(1):R26.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Messent EA, Buckland-Wright JC, et al. Fractal analysis of trabecular bone in knee osteoarthritis (OA) is a more sensitive marker of disease status than bone mineral density (BMD). Calcif Tissue Int. 2005a;76(6):419–25.PubMedCrossRefGoogle Scholar
  89. Messent EA, Ward RJ, et al. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage. 2005b;13(1):39–47.PubMedCrossRefGoogle Scholar
  90. Messent EA, Ward RJ, et al. Tibial cancellous bone changes in patients with knee osteoarthritis. A short-term longitudinal study using fractal signature analysis. Osteoarthritis Cartilage. 2005c;13(6):463–70.PubMedCrossRefGoogle Scholar
  91. Messent EA, Ward RJ, et al. Differences in trabecular structure between knees with and without osteoarthritis quantified by macro and standard radiography, respectively. Osteoarthritis Cartilage. 2006;14(12):1302–5.PubMedCrossRefGoogle Scholar
  92. Morgan EF, Bayraktar HH, et al. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.PubMedCrossRefGoogle Scholar
  93. Nazemi M, Cooper DML, et al. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study. Med Eng Phys. 2016; (in press).Google Scholar
  94. Neogi T. Clinical significance of bone changes in osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4(4):259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Neogi T, Felson D, et al. Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the Multicenter Osteoarthritis Study. Arthritis Rheum. 2009a;61(11):1539–44.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Neogi T, Felson D, et al. Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies. Br Med J. 2009b;339:2844–50.CrossRefGoogle Scholar
  97. Ochiai N, Sasho T, et al. Objective assessments of medial osteoarthritic knee severity by MRI: new computer software to evaluate femoral condyle contours. Int Orthop. 2010;34(6):811–7.PubMedCrossRefGoogle Scholar
  98. Ondrouch AS. Cyst formation in osteoarthritis. J Bone Joint Surg (Br). 1963;45:755–60.Google Scholar
  99. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;213:34–40.Google Scholar
  100. Radin EL, Paul IL, et al. Subchondral bone changes in patients with early degenerative joint disease. Arthritis Rheum. 1970;13(4):400–5.PubMedCrossRefGoogle Scholar
  101. Radin EL, Paul IL, et al. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1(7749):519–22.PubMedCrossRefGoogle Scholar
  102. Radin EL, Parker HG, et al. Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration. J Biomech. 1973;6(1):51–7.PubMedCrossRefGoogle Scholar
  103. Reichenbach S, Guermazi A, et al. Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage. 2008;16(9):1005–10.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Roemer FW, Hunter DJ, et al. Hip osteoarthritis MRO scoring system (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage. 2011;19:946–62.PubMedCrossRefGoogle Scholar
  105. Sabokbar A, Crawford R, et al. Macrophage-osteoclast differentiation and bone resorption in osteoarthrotic subchondral acetabular cysts. Acta Orthop Scand. 2000;71(3):255–61.PubMedCrossRefGoogle Scholar
  106. Sanghi D, Avasthi S, et al. Is radiology a determinant of pain, stiffness, and functional disability in knee osteoarthritis? A cross-sectional study. J Orthop Sci. 2011;16:719–25.PubMedCrossRefGoogle Scholar
  107. Sowers M. Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage. 2003;11(6):387–93.PubMedCrossRefGoogle Scholar
  108. Sowers MR, Karvonen-Gutierrez CA, et al. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg. 2011;93:241–51.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Spector TD, Hart DJ, et al. Definition of osteoarthritis of the knee for epidemiological studies. Ann Rheum Dis. 1993;52(11):790–4.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Speirs AD, Beaule PE, et al. Increased acetabular subchondral bone density is associated with cam-type femoroacetabular impingement. Osteoarthritis Cartilage. 2013;21(4):551–8.PubMedCrossRefGoogle Scholar
  111. Szczypinski PM, Strzelecki M, et al. MaZda – a software package for image texture analysis. Comput Methods Programs Biomed. 2009;94(1):66–76.PubMedCrossRefGoogle Scholar
  112. Szebenyi B, Hollander AP, et al. Associations between pain, function, and radiographic features in osteoarthritis of the knee. Arthritis Rheum. 2006;54(1):230–5.PubMedCrossRefGoogle Scholar
  113. Tang X. Texture information in run-length matrices. IEEE Trans Image Process. 1998;7(11):1602–9.PubMedCrossRefGoogle Scholar
  114. Torres L, Dunlop D, et al. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):1033–40.PubMedCrossRefGoogle Scholar
  115. UNSCEAR. UNSCEAR 2000 report to the general assembly – annex B: exposures from natural radiation sources sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation; 2000. http://www.unscear.org/unscear/en/publications/2000_1.html
  116. van der Kraan PM, van den Berg WB. Osteophytes: relevance and biology. Osteoarthritis Cartilage. 2007;15:237–44.PubMedCrossRefGoogle Scholar
  117. van Lenthe GH, Muller R. Prediction of failure load using micro-finite element analysis models: towards in vivo strength assessment. Drug Discov Today Technol. 2006;3(2):221–9.PubMedCrossRefGoogle Scholar
  118. von Rechenberg B, Leutenegger C, et al. Upregulation of mRNA of interleukin-1 and -6 in subchondral cystic lesions of four horses. Equine Vet J. 2001;33(2):143–9.CrossRefGoogle Scholar
  119. Wada M, Maezawa Y, et al. Relationships among bone mineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology (Oxford). 2001;40(5):499–505.CrossRefGoogle Scholar
  120. Williams JM, Brandt KD. Exercise increases osteophyte formation and diminishes fibrillation following chemically induced articular cartilage injury. J Anat. 1984;139(4):599–611.PubMedPubMedCentralGoogle Scholar
  121. Wright DA, Meguid M, et al. Subchondral bone density distribution in the human femoral head. Skeletal Radiol. 2012;41(6):677–83.PubMedCrossRefGoogle Scholar
  122. Zanetti M, Bruder E, et al. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and hostologic findings. Radiology. 2000;215:835–40.PubMedCrossRefGoogle Scholar
  123. Zysset PK, Sonny M, et al. Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia. J Arthroplasty. 1994;9(2):203–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonCanada
  3. 3.College of KinesiologyUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations