Advertisement

Utilization and Reference Values of Bone Turnover Markers: Osteocalcin and Procollagen Type 1 N-Propeptide

  • Milan Bayer
  • Vladimir Palicka
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

All body bones undergo continual remodeling. This process consists of bone resorption and bone formation which are closely coupled actions. Changes in bone tissue are accompanied by changes of biochemical markers. Plasma (and/or urine) concentration of these markers depends on bone resorption/formation activity, i.e., bone turnover rate. Osteocalcin is important noncollagenous protein in bone matrix, synthetized by osteoblasts and osteocytes. It is a good marker of bone turnover. Its undercarboxylated form has a role in regulation of energy metabolism. Osteocalcin is also involved in biosynthesis of testosterone or neurotransmitter production. Procollagen type 1 N-propeptide is a aminoterminal part of procollagen precursor cleaved by proteases during bone formation process. Its serum concentration is significantly related to newly formed collagen. Procollagen type 1 N-propeptide is supposed to be the most reliable biochemical marker of bone formation at present time. Reference values of both laboratory markers for central European population of children and adolescents are presented, and some data about reference intervals in adults from different ethnic groups are mentioned.

Keywords

Bone markers Osteocalcin Procollagen type 1 N-propeptide Reference values Children 

List of Abbreviations

AMP

5′-adenosinmonophosphate

Atf4

Activating transcription factor 4

BMI

Body mass index

EDTA

Ethylenediaminetetraacetic acid

FoxO1

Forkhead box protein O1

mRNA

Messenger ribonucleic acid

OC

Osteocalcin

P1NP

Procollagen type 1 N-propeptide

References

  1. Adami S, Bianchi G, Brandi ML, et al. Determinants of bone turnover markers in healthy premenopausal women. Calcif Tissue Int. 2008;82:341–7.CrossRefPubMedGoogle Scholar
  2. Amrein K, Amrein S, Drexler C, et al. Sclerostin and its association with physical activity, age, gender, body composition and bone mineral content in healthy adults. J Clin Endocrinol Metab. 2012;97(1):148–54.CrossRefPubMedGoogle Scholar
  3. Bayer M. Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0–18 years. Osteoporos Int. 2014;25(2):729–36.CrossRefPubMedGoogle Scholar
  4. Bergmann P, Body JJ, Boonen S, et al. Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteopororsis: a consensus document of the Belgian bone club. Int J Clin Pract. 2009;63(1):19–26.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Blumsohn A, Hannon RA, Eastell R. Apparent instability of osteocalcin in serum as measured with different commercially available immunoassays. Clin Chem. 1995;41:318–9.PubMedGoogle Scholar
  6. Blumsohn A, Naylor KE, Timm W, et al. Absence of marked seasonal change in bone turnover: a longitudinal and multicentre cross-sectional study. J Bone Miner Res. 2003;18:1274–81.CrossRefPubMedGoogle Scholar
  7. Brandt J, Krogh TN, Jensen CH, et al. Thermal instability of the trimeric structure of the N-terminal propeptide of human procollagen type I in relation to assay technology. Clin Chem. 1999;45(1):47–53.PubMedGoogle Scholar
  8. Brown JP, Albert C, Nassar BA, et al. Bone turnover markers in the management of osteoporosis. Clin Biochem. 2009;42:929–42.CrossRefPubMedGoogle Scholar
  9. Bunyaratavej N, Kittimanon N. Study of procollagen type1 nitrogenous propeptides (P1NP) in reproductive female. J Med Assoc Thai. 2005;88 Suppl 5:S27–8.PubMedGoogle Scholar
  10. Carey JJ, Licata AA, Delaney MF. Biochemical markers of bone turnover. Clin Rev Bone Miner Metab. 2006;4(3):197–212.CrossRefGoogle Scholar
  11. Chiu KM, Ju J, Mayes D, et al. Changes in bone resorption during the menstrual cycle. J Bone Miner Res. 1999;14(4):609–15.CrossRefPubMedGoogle Scholar
  12. Clowes JA, Hannon RA, Yap TS, et al. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30(6):886–90.CrossRefPubMedGoogle Scholar
  13. Crofton PM, Evans N, Taylor MRH, Holland CV. Procollagen type I amino-terminal propeptide: pediatric reference data and relationship with procollagen type I carboxyterminal propeptide. Clin Chem. 2004;50(11):2173–6.CrossRefPubMedGoogle Scholar
  14. da Silva CC, Kurokawa CS, Nga HS, et al. Bone metabolism biomarkers, body weight, and bone age in healthy Brazilian male adolescents. J Pediatr Endocrinol Metab. 2012;25(5–6):479–84.PubMedGoogle Scholar
  15. Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys. 2014;561:137–46.CrossRefPubMedGoogle Scholar
  16. Ferron M, Wei J, Yoshizawa T, et al. An ELISA-based method to quantify osteocalcin carboxylation in mice. Biochem Biophys Res Commun. 2010;397:691–6.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Finkelstein JS, Wyland JJ, Lee H, Neer RM. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2010;95(4):1838–45.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Foresta C, Strapazzon G, De Toni L, et al. Evidence for osteocalcin production by adipose tissue and its role in human metabolism. J Clin Endocrinol Metab. 2010;95:3502–6.CrossRefPubMedGoogle Scholar
  19. Garnero P. Markers of bone trnover for the prediction of fracture risk. Osteoporos Int. 2000;11 Suppl 6:S55–65.CrossRefPubMedGoogle Scholar
  20. Glover SJ, Garnero P, Naylor K, et al. Establishing a reference range for bone turnover markers in young, healthy women. Bone. 2008;42(4):623–30.CrossRefPubMedGoogle Scholar
  21. Gundberg CM, Lian JB, Booth SL. Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Adv Nutr. 2012;3:149–57.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hauschka PV, Lian JB, Gallop PM. Direct identification of the calcium-binding amino acid, γ-carboxyglutamate, in mineralised tissue. Proc Natl Acad Sci U S A. 1975;72:3925–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Holvik K, van Schoor NM, Eekhoff EM, et al. Plasma osteocalcin levels as a predictor of cardiovascular disease in older men and women: a population-based cohort study. Eur J Endocrinol. 2014;171(2):161–70.CrossRefPubMedGoogle Scholar
  24. Jenkins N, Black M, Paul E, et al. Age-related reference intervals for bone turnover markers from an Australian reference population. Bone. 2013;55(2):271–6.CrossRefPubMedGoogle Scholar
  25. Jürimäe J, Lätt E, Mäestu J, et al. Osteocalcin is inversely associated with adiposity and leptin in adolescent boys. J Pediatr Endocrinol Metab. 2015;28(5–6):571–7.PubMedGoogle Scholar
  26. Kanazawa I. Osteocalcin as a hormone regulating glucose metabolism. World J Diabetes. 2015;6(18):1345–54.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Klein GI. Insulin nad bone: recent developments. World J Diabetes. 2014;5(1):14–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kode A, Mosialou I, Silva BC, et al. J Biol Chem. 2012;287:8757–68.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kondo A, Otsuka T, Kato K, et al. AMP-activated protein kinase regulates thyroid hormone- stimulated osteocalcin synthesis in osteoblasts. Int J Mol Med. 2013;31:1457–62.PubMedGoogle Scholar
  30. Kryskiewicz E, Pawlowska J, Pludowski P, et al. Bone metabolism in cholestatic children before and after living-related liver transplantation--a long-term prospective study. J Clin Densitom. 2012;15(2):233–40.CrossRefPubMedGoogle Scholar
  31. Lee JA, Hodges R, Eastell R. Measurement of osteocalcin. Ann Clin Biochem. 2000;37(4):432–46.CrossRefPubMedGoogle Scholar
  32. Marin L, Koivila M-K, Jukkola-Vuorinen A, et al. Comparison of total and intact aminoterminal propeptide of type 1 procolagen assays in patients with breast cancer with and without bone metastases. Ann Clin Biochem. 2011;48:447–51.CrossRefPubMedGoogle Scholar
  33. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Martínez J, Olmos JM, Hernández JL, et al. Bone turnover markers in Spanish postmenopausal women: the Camargo cohort study. Clin Chim Acta. 2009;409(1–2):70–4.CrossRefPubMedGoogle Scholar
  36. Mora S, Prinster C, Proverbio MC, et al. Urinary markers of bone turnover in healthy children and adolescents: age-related changes and effect of puberty. Calcif Tissue Int. 1998;63:369–74.CrossRefPubMedGoogle Scholar
  37. Mora S, Pitukcheewanont P, Kaufman FR, et al. Biochemical markers of bone turnover and the volume and the density of bone in children at different stages of sexual development. J Bone Miner Res. 1999;14:1664–71.CrossRefPubMedGoogle Scholar
  38. Munday K, Ginty F, Fulford A, Bates CJ. Relationships between biochemical bone turnover markers, season, and inflammatory status indices in Prepubertal Gambian Boys. Calcif Tissue Int. 2006;79:15–21.CrossRefPubMedGoogle Scholar
  39. Nabipour I, Larijani B, Jafari S-M, et al. Reference database of CrossLaps and osteocalcin for a healthy Iranian population. Arch Iran Med. 2008;11(2):203–6.PubMedGoogle Scholar
  40. Nielsen HK, Brixen K, Boullion R, Mosekilde L. Changes in biochemical markers of osteoblastic activity during the menstrual cycle. J Clin Endocrinol Metab. 1990;70:1431–7.CrossRefPubMedGoogle Scholar
  41. Nishimura J, Arai N, Tohmatsu J-I. Measurement of serum undercarboxylated osteocalcin by ECLIA with the “Picolumi ucOC” kit. Clin Calcium. 2007;11(17):1702–8.Google Scholar
  42. Nomura Y, Yoshizaki A, Yoshikata H, et al. Study of the distribution by age group of serum cross-linked C-terminal telopeptide of type I collagen and procollagen type I N-propeptide in healthy Japanese women to establish reference values. J Bone Miner Metab. 2013;31(6):644–51.CrossRefPubMedGoogle Scholar
  43. Oldknow KJ, MacRae VE, Farquharson C. Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. J Endocrinol. 2015;225:R1–19.CrossRefPubMedGoogle Scholar
  44. Olmos JM, Hernández JL, Martínez J, et al. Bone turnover markers in Spanish adult men The Camargo Cohort Study. Clin Chim Acta. 2010;411(19–20):1511–5.CrossRefPubMedGoogle Scholar
  45. Oury F, Sumara G, Sumara O, et al. Endocrine regulation of male fertility. Cell. 2011;144:796–809.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Oury F, Ferron M, Wang HZ, et al. Osteocalcin regulates murine and humanfertility through a pancreas-bone-testis axis. J Clin Invest. 2013;123:2421–33.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rauchenzauner M, Schmid A, Heinz-Erian P, et al. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92(2):443–9.CrossRefPubMedGoogle Scholar
  48. Russell M, Breggia A, Mendes N, et al. Growth hormone is positively associated with surrogate markers of bone turnover during puberty. Clin Endocrinol (Oxf). 2011;75(4):482–8.CrossRefGoogle Scholar
  49. Schönau E, Rauch F. Markers of bone and collagen metabolism – problems and perspectives in paediatrics. Horm Res. 1997;48 Suppl 5:50–9.PubMedGoogle Scholar
  50. Shao J, Hang Z, Yang T, et al. Bone regulates glucose metabolism as an endocrine organ through osteocalcin. Int J Endocrinol. 2015. doi: 10.1155/2015/967673. art. ID 967673.PubMedPubMedCentralGoogle Scholar
  51. Stokes FJ, Ivanov P, Bailey LM, Frazer WD. The effects of samplings procedures and storage conditions on short-term stability of blood-based biochemical markers of bone metabolism. Clin Chem. 2011;57(1):138–40.CrossRefPubMedGoogle Scholar
  52. Szulc P, Seeman E, Delmas PD. Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int. 2000;11:281–94.CrossRefPubMedGoogle Scholar
  53. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13:777–87.CrossRefPubMedGoogle Scholar
  54. Vasikaran S, Cooper C, Eastell R, et al. International osteoporosis foundation and international federation of clinical chemistry and laboratory medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011a;49(8):1271–4.CrossRefPubMedGoogle Scholar
  55. Vasikaran S, Eastell R, Bruyère O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: need for international reference standards. Osteoporos Int. 2011b;22:391–420.CrossRefPubMedGoogle Scholar
  56. Wheater G, Elshahaly M, Tuck SP, et al. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Woitge HW, Scheidt-Nave C, Kissling C, et al. Seasonal variation of biochemical indices of bone turnover: results of a population-based study. J Clin Endocrinol Metab. 1998;83:68–75.PubMedGoogle Scholar
  58. Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016;82:42–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Children and Adolescents Third Faculty of Medicine, Charles UniversityPrague 10Czech Republic
  2. 2.University Hospital Hradec KrálovéHradec KrálovéCzech Republic

Personalised recommendations