Advertisement

Bone Biomarkers in HIV

  • Mark Bloch
  • Giovanni Guaraldi
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

HIV infection is associated with higher rates of low bone density and fragility fracture, occurring at an earlier age and to a greater extent with ageing in those with HIV, compared to the general population. These outcomes result from a combination of direct HIV effect on bone turnover, the effects of immune pertubation, as well as the inflammatory effect caused by HIV viraemia. Additionally those with HIV have higher rates of lifestyle risk factors as well as higher rates of co-morbidities that increase the biomarkers of bone formation and resorption, and correlate with increased bone turnover and low bone density.

Treatment with antiretroviral therapy, particularly with nucleoside analogues such tenofovir disoproxil fumarate, and protease inhibitor therapy, results in increased bone turnover and lower bone density. These changes are most prominent in the first year of antiretroviral therapy, and then tend to plateau. Changes in bone biomarkers predict the changes in bone turnover and bone density with antiretroviral therapy. Bone biomarkers and bone mineral density have been demonstrated to improve with changes to components of antiretroviral regimens.

Bone biomarkers have been used for research purposes in predicting and monitoring bone turnover and bone density changes in HIV. However the use of bone biomarkers is not yet developed to routine clinical application in HIV management.

Keywords

HIV Antiretroviral therapy Bone biomarkers Osteoporosis Fracture 

List of Abbreviations

AIDS

Acquired immunodeficiency syndrome

ALP

Alkaline phosphatase

ART

Antiretroviral therapy

BAP

Bone-specific alkaline phosphatase

BMD

Bone mineral density

BMI

Body mass index

CTX

Carboxyterminal collagen telopeptides

DPD

Deoxypyridinoline

DXA

Dual-energy x-ray absorptiometry

FRAX

Fracture Risk Assessment Tool

GAG

Glycosaminoglycan

HIV

Human immunodeficiency virus

HPRO

Hydroxyproline

ICTP

Carboxyterminal cross-linked telopeptide of type I collagen

IL6

Interleukin 6

INSTI

Integrase strand transfer inhibitor

IRIS

Immune inflammatory reconstitution syndrome

MACS

Multicenter AIDS cohort study

NICM

Noninfectious comorbidities

NRTI

Nucleoside/nucleotide reverse transcriptase inhibitor

NNRTI

Non-nucleoside reverse transcriptase inhibitor

NTX

Amino-terminal collagen telopeptides

OM

Osteomalacia

OPG

Osteoprotegerin

PI/rPI

Protease inhibitor/ritonavir-boosted protease inhibitor

PICP

C-terminal carboxyterminal peptide of type 1 collagen

PINP

N-terminal carboxyterminal peptide of type 1 collagen

PYD

Pyridinoline

RANK

Receptor activator of nuclear factor kappa-B

RANKL

Receptor activator of nuclear factor kappa-B ligand

RR

Relative risk

START

Strategic timing of antiretroviral treatment

TAF

Tenofovir alafenamide

TBS

Trabecular bone score

TDF

Tenofovir disoproxil fumarate

TNF

Tumor necrosis factor

TNFR

Tumor necrosis factor receptor

TRAP

Tartrate-resistant acid phosphatase

TRACP5b

Tartrate-resistant acid phosphatase isoform 5b

VACS

Veterans Aging Cohort Study

VPR

Viral protein of regulation

References

  1. Allavena C, Delpierre C, Cuzin L, et al. High frequency of vitamin D deficiency in HIV-infected patients: effects of HIV-related factors and antiretroviral drugs. J Antimicrob Chemother. 2012;67(9):2222–30.CrossRefPubMedGoogle Scholar
  2. Althoff KN, McGinnis KA, Wyatt CM, Justice AC, et al. Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected vs uninfected adults. Clin Infect Dis. 2014. doi: 10.1093/cid/ciu869.Google Scholar
  3. Aurpibul L, Puthanakit T. Review of tenofovir use in HIV-infected children. Pediatr Infect Dis J. 2015;34(4):383–91.CrossRefPubMedGoogle Scholar
  4. Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS. 2012;26(7):825–31.CrossRefPubMedGoogle Scholar
  5. Bedimo RJ, Dreschsler H, Jain M, Cutrell J, et al. The RADAR study: week 48 safety and efficacy of RAltegravir combined with boosted DARunavir compared to tenofovir/emtricitabine combined with boosted darunavir in antiretroviral-naive patients. Impact on bone health. PLoS One. 2014;9(8):e106221.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bellasi A, Raggi P, Rossi R, Rochira V, et al. Intact parathyroid hormone levels are associated with increased carotid intima media thickness in HIV infected patients. Atherosclerosis. 2014;237(2):618–22.CrossRefPubMedGoogle Scholar
  7. Bernadino JI, Morcroft A, Mallon PW, Wallet C, et al. Bone mineral density and inflammatory and bone biomarkers after darunavir–ritonavir combined with either raltegravir or tenofovir–emtricitabine in antiretroviral-naive adults with HIV-1: a substudy of the NEAT001/ANRS143 randomised trial. Lancet HIV. 2015;2(11):e464–73.CrossRefGoogle Scholar
  8. Bloch M, Tong W, Hoy J, Baker D, Lee F, Richardson R, Carr A. Switch from tenofovir to raltegravir increases low bone mineral density and decreases markers of bone turnover over 48 weeks. HIV Med. 2014;15(6):373–80.CrossRefPubMedGoogle Scholar
  9. Bolland MJ, Grey AB, Horne AM, Briggs SE, Thomas MG, et al. Annual zoledronate increases bone density in highly active antiretroviral therapy-treated human immunodeficiency virus-infected men: a randomized controlled trial. J Clin Endocrinol Metab. 2007;92:1283–8.CrossRefPubMedGoogle Scholar
  10. Bolland MJ, Grey A, Reid IR. Skeletal health in adults with HIV infection. Lancet HIV. 2015;3(1):63–74.Google Scholar
  11. Brown T, Hoy J, Borderi M, Guaraldi G, et al. Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis. 2015;60(8):1242–51.Google Scholar
  12. Brown TT, McComsey GA. Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. Antivir Ther. 2010;15:425–9.CrossRefPubMedGoogle Scholar
  13. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20:2165–74.CrossRefPubMedGoogle Scholar
  14. Brown TT, Ross AC, Storer N, Labbato D, McComsey G. Bone turnover, OPG/RANKL, and inflammation with antiretroviral initiation: comparison of tenofovir- vs. non-tenofovir regimens. Antivir Ther. 2011;16(7):1063–72.CrossRefPubMedGoogle Scholar
  15. Brown TT, Chen Y, Currier JS, Ribaudo HR, et al. Body composition, soluble markers of inflammation, and bone mineral density in antiretroviral therapy-Naïve HIV-1 infected individuals. J Acquir Immune Defic Syndr. 2013;63(3):323–30.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Burch J, Rice S, Yang H, Neilson A, Stirk L, Francis R, et al. Systematic review of the use of bone turnover markers for monitoring the response to osteoporosis treatment: the secondary prevention of fractures, and primary prevention of fractures in high-risk groups. Health Technol Assess. 2014;18:1–180.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Camozzi V, Moro L, Luisetto G, Vescini F, Bone turnover markers in clinical practice and their potential use in HIV-related bone disease. HAART and correlated pathologies. 2009. http://www.mnlpublimed.com/public/HA02-A01.pdf
  18. Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12:F51–8.CrossRefPubMedGoogle Scholar
  19. Cazanave C, Dupon M, Lavignolle-Aurillac V, Barthe N, et al. Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. AIDS. 2008;22(3):395–402.CrossRefPubMedGoogle Scholar
  20. Cervero M, Agud J, García-Lacalle C, et al. Prevalence of vitamin D deficiency and its related risk factor in a Spanish cohort of adult HIV-infected patients: effects of antiretroviral therapy. AIDS Res Hum Retroviruses. 2012;28(9):963–71.CrossRefPubMedGoogle Scholar
  21. Cummings SR, San Martin J, McClung MR, Siris ES, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.CrossRefPubMedGoogle Scholar
  22. De Socio GV, Fabbriciani G, Massarotti M, Messina S, et al. Hypophosphatemic osteomalacia associated with tenofovir: a multidisciplinary approach is required. Mediterr J Hematol Infect Dis. 2012;4(1):2012025–5.Google Scholar
  23. Deeks SG, Phillips AN. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ. 2009;338:a3172.CrossRefPubMedGoogle Scholar
  24. Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity. 2013;39(4):633–45.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Department of Health and Human Services. Panel on antiretroviral guidelines for adults and adolescents. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. 2016 Jan 28 [cited 2016 Jan]. http://www.Aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf
  26. Duvivier C, Kolta S, Assoumou L, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS. 2009;23:817–24.CrossRefPubMedGoogle Scholar
  27. Fakruddin JM, Laurence J. HIV-1 Vpr enhances production of receptor of activated NF-kappaB ligand (RANKL) via potentiation of glucocorticoid receptor activity. Arch Virol. 2005;150(1):67–78.CrossRefPubMedGoogle Scholar
  28. Gafni RI, Hazra R, Reynolds JC, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy: impact on bone mineral density in HIV-infected children. Pediatrics. 2006;118:e711–8.CrossRefPubMedGoogle Scholar
  29. Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral naïve patients: a 3-year randomized trial. JAMA. 2004;292:191–201.CrossRefPubMedGoogle Scholar
  30. Gibellini D, Borderi M, De Crignis E, Cicola R, et al. RANKL/OPG/TRAIL plasma levels and bone mass loss evaluation in antiretroviral naive HIV-1-positive men. J Med Virol. 2007;79(10):1446–54.CrossRefPubMedGoogle Scholar
  31. Gibellini D, De Crignis E, Ponti C, et al. HIV-1 triggers apoptosis in primary osteoblasts and HOBIT cells through TNFalpha activation. J Med Virol. 2008;80(9):1507–14.CrossRefPubMedGoogle Scholar
  32. Grant PM, Kitch D, McComsey GA, Dube MP, et al. Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. Clin Infect Dis. 2013;57:1483–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Grant P, Kitch D, McComsey G, Brown T, et al. Long-term bone mineral density changes in antiretroviral-treated HIV-infected individuals. In: 8th International AIDS Society Conference on HIV Pathogenesis, Treatment, and Prevention; 2015 July 19–22; Vancouver; 2015. Abstract TUPDB0103.Google Scholar
  34. Grey A, Bolland MJ, Horne A, Wattie D, et al. Five years of anti-resorptive activity after a single dose of zoledronate-results from a randomized double-blind placebo-controlled trial. Bone. 2012;50(6):1389–93.CrossRefPubMedGoogle Scholar
  35. Grigsby IF, Pham L, Mansky LM, Gopalakrishnan R, et al. Tenofovir treatment of primary osteoblasts alters gene expression profiles: implications for bone mineral density loss. Biochem Biophys Res Commun. 2010;394(1):48–53.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Guaraldi G, Orlando G, Madeddu G, et al. Alendronate reduces bone resorption in HIV-associated osteopenia/osteoporosis. HIV Clin Trials. 2004;5(5):269–77.CrossRefPubMedGoogle Scholar
  37. Guaraldi G, Orlando G, Zona S, Menozzi M, et al. Premature age-related co-morbidities among HIV-infected persons compared to the general population. Clin Infect Dis. 2011;53(11):1120–6.CrossRefPubMedGoogle Scholar
  38. Güerri-Fernandez R, Vestergaard P, Carbonell C, Knobel H, et al. HIV infection is strongly associated with hip fracture risk, independently of age, gender, and comorbidities: a population-based cohort study. J Bone Miner Res. 2013;28(6):1259–63.CrossRefPubMedGoogle Scholar
  39. Harris VW, Brown TT. Bone loss in the HIV-infected patient: evidence, clinical implications, and treatment strategies. JID. 2012;205 Suppl 3:S391–8.CrossRefGoogle Scholar
  40. Haskelberg H, Carr A, Emery S. Bone turnover markers in HIV disease. AIDS Rev. 2011;13(4):240–50.PubMedGoogle Scholar
  41. Haskelberg H, Hoy JF, Amin J, Ebling PR, et al. Changes in bone turnover and bone loss in HIV-infected patients changing treatment to tenofovir-emtricitabine or abacavir-lamivudine. Plos One. 2012. doi: 10.1371/journal.pone.0038377.PubMedPubMedCentralGoogle Scholar
  42. Huang JS, Rietschel P, Hadigan CM, Rosenthal DI, Grinspoon S. Increased abdominal visceral fat is associated with reduced bone density in HIV-infected men with lipodystrophy. AIDS. 2001;15:975–82.CrossRefPubMedGoogle Scholar
  43. Ivaska KK, Gerdhem P, Väänänen HK, Akesson K, Obrant KJ. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res. 2010;25(2):393–403.CrossRefPubMedGoogle Scholar
  44. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142:5050–5.CrossRefPubMedGoogle Scholar
  45. Lawson E, Walker-Bone K. The changing spectrum of rheumatic disease in HIV infection. Br Med Bull. 2012;103(1):203–21.CrossRefPubMedGoogle Scholar
  46. Liu AY, Vittinghoff E, Sellmeyer DE, Irvin R, Mulligan K, et al. Bone mineral density in HIV-negative men participating in a tenofovir pre-exposure prophylaxis randomized clinical trial in San Francisco. Plos One. 2011. doi: 10.1371/journal.pone.0023688.Google Scholar
  47. Madeddu G, Spanu A, Solinas P, et al. Bone mass loss and vitamin D metabolism impairment in HIV patients receiving highly active antiretroviral therapy. Q J Nucl Med Mol Imaging. 2004;48(1):39–48.PubMedGoogle Scholar
  48. Martin A, Moore C, Mallon PWG, Hoy J, et al. Bone mineral density in HIV participants randomized to raltegravir and lopinavir/ritonavir compared with standard second line therapy. AIDS. 2013;27(15):2403–11.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mateo L, Holgado S, Mariñoso ML, Pérez-Andrés R, et al. Hypophosphatemic osteomalacia induced by tenofovir in HIV-infected patients. Clin Rheumatol. Springer, London; 2014. pp 1–9.Google Scholar
  50. Mathew G, Knaus SJ. Acquired Fanconi’s syndrome associated with tenofovir therapy. J Gen Intern Med. 2006;21(11):C3–5.CrossRefPubMedPubMedCentralGoogle Scholar
  51. McComsey GA, Tebas P, Shane E, Yin MT, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis. 2010;51(8):937–46.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Meier C, Nguyen TV, Center JR, Seibel MJ, Eisman JA. Bone resorption and osteoporotic fractures in elderly men: the Dubbo osteoporosis epidemiology study. J Bone Miner Res. 2005;20:579–87.CrossRefPubMedGoogle Scholar
  53. Mills T, Andrad J, DiPerri G, et al. Switching from a tenofovir disoproxil fumarate (TDF)-based regimen to a tenofovir alafenamide (TAF)-based regimen: data in virologically suppressed adults through 48 weeks of treatment. In: Program and abstracts of the 2015 International AIDS Society Conference; 2015 July 19–22; Vancouver; 2015. Abstract TUAB0102.Google Scholar
  54. Molina J, Capitant C, Spire B, Pialoux G. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N Engl J Med. 2015;373:2237–46.CrossRefPubMedGoogle Scholar
  55. Mondy K, Yarasheski K, Powderly WG, Whyte M, et al. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus–infected individuals. Clin Infect Dis. 2003;36:482–90.CrossRefPubMedGoogle Scholar
  56. Mora S, Salab N, Bricallib D, Zuinb G, et al. Bone mineral loss through increased bone turnover in HIV-infected children treated with highly active antiretroviral therapy. AIDS. 2001;15:1823–9.CrossRefPubMedGoogle Scholar
  57. Morse CG, Mican JM, Jones EC, et al. The incidence and natural history of osteonecrosis in HIV-infected adults. Clin Infect Dis. 2007;44:739–48.CrossRefPubMedGoogle Scholar
  58. Mulligan K, Rutledge B, Kapogiannis BG, et al. Bone changes in young men ages 18–22 enrolled in a pre-exposure prophylaxis (PrEP) safety and demonstration study using tenofovir disoproxil fumarate/emtricitabine (TDF/FTC). In: 15th European AIDS Conference and 17th International Workshop on Co-morbidities and Adverse Drug Reactions in HIV; 2015 Oct 21–24; Barcelona; 2015.Google Scholar
  59. Natsag J, Kendall MA, Sellmeyer DE, McComsey GA, Brown TT. Vitamin D, osteoprotegerin/receptor activator of nuclear factor-kappaB ligand (OPG/RANKL) and inflammation with alendronate treatment in HIV-infected patients with reduced bone mineral density. HIV Med. 2015. doi: 10.1111/hiv.12291. [Epub ahead of print].PubMedPubMedCentralGoogle Scholar
  60. Nguyen BY, Reveille JD. Rheumatic manifestations associated with HIV in the highly active antiretroviral therapy era. Curr Opin Rheumatol. 2009;21(4):404–10.CrossRefPubMedGoogle Scholar
  61. Piso RJ, Rothen M, Rothen JP, Stahl M. Markers of bone turnover are elevated in patients with antiretroviral treatment independent of the substance used. JAIDS. 2011;56(4):320–4.PubMedGoogle Scholar
  62. Prieto-Alhambra D, Güerri-Fernández R, Vries F, et al. HIV infection and its association with an excess risk of clinical fractures: a nationwide case–control study. JAIDS. 2014;66(1):90–5.PubMedGoogle Scholar
  63. Ramayo E, González-Moreno MP, Macías J, et al. Relationship between osteopenia, free testosterone, and vitamin D metabolite levels in HIV-infected patients with and without highly active antiretroviral therapy. AIDS Res Hum Retroviruses. 2005;21(11):915–21.CrossRefPubMedGoogle Scholar
  64. Samaras K, Pett S, Gowers A, McMurchie M, Cooper DA. Iatrogenic Cushing’s syndrome with osteoporosis and secondary adrenal failure in human immunodeficiency virus-infected patients receiving inhaled corticosteroids and ritonavir-boosted protease inhibitors: six cases. J Clin Endocrinol Metab. 2005;90(7):4394–8.CrossRefPubMedGoogle Scholar
  65. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V. Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab. 2004;89(9):4246–53.CrossRefPubMedGoogle Scholar
  66. Seibel MJ. Biochemical markers of bone turnover part I: biochemistry and variability. Clin Biochem Rev. 2005;26:97–122.PubMedPubMedCentralGoogle Scholar
  67. Seminari E, Castagna A, Soldarini A, Galli L, et al. Osteoprotegerin and bone turnover markers in heavily pretreated HIV-infected patients. HIV Med. 2005;6(3):145–50.CrossRefPubMedGoogle Scholar
  68. Sharma A, Flom PL, Weedon J, Klein RS. Prospective study of bone mineral density changes in aging men with or at risk for HIV infection. AIDS. 2010;24(15):2337–45.PubMedPubMedCentralGoogle Scholar
  69. Shiau S, Broun EC, Arpadi SM, Yin MT. Incident fractures in HIV-infected individuals: a systematic review and meta-analysis. AIDS. 2013;27(12):1949–57.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Silva BC, Leslie WD, Resch H, Lamy O, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA Image. J Bone Miner Res. 2014;29(3):518–30 vol. 19.CrossRefPubMedGoogle Scholar
  71. Slama L. Changes in bone turnover markers with HIV seroconversion and antiretroviral therapy initiation. In: 15th European AIDS Conference and 17th International Workshop on Co-morbidities and Adverse Drug Reactions in HIV; 2015 Oct; Barcelona; 2015.Google Scholar
  72. Stellbrink H, Orkin C, Arribas J, Compston J, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. CID. 2010;51:963–72.CrossRefGoogle Scholar
  73. Tebas P, Powderly WG, Claxton S, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS. 2000;14:F63–77.CrossRefPubMedPubMedCentralGoogle Scholar
  74. The INSIGHT START Study Group. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015;373:795–807.CrossRefPubMedCentralGoogle Scholar
  75. The Strategies for Management of Antiretroviral Therapy (SMART) Study Group. CD4+ count–guided interruption of antiretroviral treatment. N Engl J Med. 2006;355:2283–96.CrossRefGoogle Scholar
  76. The TEMPRANO ANRS 12136 Study Group. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N Engl J Med. 2015;373:808–22.CrossRefGoogle Scholar
  77. Titanji K, Vunnava A, Sheth AN, Delille C, et al. Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection. PLoS Pathog. 2014;10(10), e1004497.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499–504.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wheeler AL, Tien PC, Grunfeld C, Schafer AL. Teriparatide treatment of osteoporosis in an HIV-infected man: a case report and literature review. AIDS. 2015;29:245–50.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wohl D, Oka S, Clumeck N, et al. A randomized, double-blind comparison of tenofovir alafenamide (TAF) vs. tenofovir disoproxil fumarate (TDF), each coformulated with elvitegravir, cobicistat and emtricitabine (E/C/F) for initial HIV-1 treatment: week 96 results. In: 15th European AIDS Conference, abstract LBBPD1/1; 2015.Google Scholar
  81. Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, et al. Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One. 2011;6:e17217.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yin MT, Lu D, Cremers S, et al. Short-term bone loss in HIV-infected premenopausal women. J Acquir Immune Defic Syndr. 2010;53(2):202–8.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yin MT, Zhang CA, McMahon DJ, et al. Higher rates of bone loss in postmenopausal HIV-infected women: a longitudinal study. J Clin Endocrinol Metab. 2012;97(2):554–62.CrossRefPubMedGoogle Scholar
  84. Yin MT, Skanderson M, Shiau S, et al. Fracture prediction with modified FRAX in older HIV+ and HIV- men. In: CROI; 2015 Feb 23–26; Seattle; 2015. Abstract 141.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Holdsworth House Medical PracticeDarlinghurstAustralia
  2. 2.Kirby InstituteUniversity of New South WalesSydneyAustralia
  3. 3.Department of Medical and Surgical Sciences for Children and AdultsUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations