Advertisement

Spine Bone Texture and the Trabecular Bone Score (TBS)

  • William D. Leslie
  • Neil Binkley
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Trabecular bone score (TBS) is a gray-level texture measure that can be extracted from two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) images and provides skeletal information beyond standard bone mineral density (BMD) measurement. This chapter reviews scientific and clinical evidence on the development, validation, and clinical application of lumbar spine TBS. TBS should not be used alone to determine treatment recommendations, but can be used in association with the World Health Organization fracture risk assessment tool (FRAX) to adjust FRAX probability of fracture in postmenopausal women and older men and additionally guide decisions regarding treatment initiation.

Keywords

Osteoporosis Fracture Trabecular bone score Bone texture Dual-Energy X-ray Absorptiometry 

References

  1. Aloia JF, Mikhail M, Usera G, et al. Trabecular bone score (TBS) in postmenopausal African American women. Osteoporos Int. 2015;26:1155–61.CrossRefPubMedGoogle Scholar
  2. Amstrup AK, Jakobsen NF, Moser E, et al. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J Bone Miner Metab. 2015; [Epub ahead of print]Google Scholar
  3. Ayoub ML, Maalouf G, Bachour F, et al. DXA-based variables and osteoporotic fractures in Lebanese postmenopausal women. Orthop Traumatol Surg Res. 2014;100:855–8.CrossRefPubMedGoogle Scholar
  4. Baldini M, Ulivieri FM, Forti S, et al. Spine bone texture assessed by Trabecular Bone Score (TBS) to evaluate bone health in thalassemia major. Calcif Tissue Int. 2014;95:540–6.CrossRefPubMedGoogle Scholar
  5. Bandirali M, Poloni A, Sconfienza LM, et al. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study. Eur Radiol. 2015;25:2194–8.CrossRefPubMedGoogle Scholar
  6. Bazzocchi A, Ponti F, Diano D, et al. Trabecular bone score in healthy ageing. Br J Radiol. 2015;88:20140865.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Binkley N, Leslie WD. Clinical application of spine Trabecular Bone Score (TBS). Clinic Rev Bone Miner Metab. 2016;14:14–25.CrossRefGoogle Scholar
  8. Bousson V, Bergot C, Sutter B, et al. Trabecular Bone Score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23:1489–501.CrossRefPubMedGoogle Scholar
  9. Bousson V, Bergot C, Sutter B, et al. Trabecular bone score: where are we now? Joint Bone Spine. 2015;82:320–5.CrossRefPubMedGoogle Scholar
  10. Boutroy S, Hans D, Sornay-Rendu E, et al. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int. 2013;24:77–85.CrossRefPubMedGoogle Scholar
  11. Breban S, Briot K, Kolta S, et al. Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom. 2012;15:260–6.CrossRefPubMedGoogle Scholar
  12. Briot K, Paternotte S, Kolta S, et al. Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone. 2013;57:232–6.CrossRefPubMedGoogle Scholar
  13. Cranney A, Jamal SA, Tsang JF, et al. Low bone mineral density and fracture burden in postmenopausal women. CMAJ. 2007;177:575–80.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Del Rio LM, Winzenrieth R, Cormier C, et al. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case–control study. Osteoporos Int. 2013;24:991–8.CrossRefPubMedGoogle Scholar
  15. Dhaliwal R, Cibula D, Ghosh C, et al. Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int. 2014;25:1969–73.CrossRefPubMedGoogle Scholar
  16. Di GS, Del RL, Rodriguez-Tolra J, et al. Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the trabecular bone score (TBS). Bone. 2015;75:138–43.CrossRefGoogle Scholar
  17. Donaldson AA, Feldman HA, O'Donnell JM, et al. Spinal bone texture assessed by trabecular bone score in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab. 2015;100:3436–42.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dufour R, Winzenrieth R, Heraud A, et al. Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int. 2013;24:2837–46.CrossRefPubMedGoogle Scholar
  19. El HR, Khairallah W, Bachour F, et al. Influence of age, morphological characteristics, and lumbar spine bone mineral density on lumbar spine trabecular bone score in Lebanese women. J Clin Densitom. 2014;17:434–5.CrossRefGoogle Scholar
  20. Eller-Vainicher C, Filopanti M, Palmieri S, et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol. 2013;169:155–62.CrossRefPubMedGoogle Scholar
  21. Giangregorio LM, Leslie WD, Lix LM, et al. FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res. 2012;27:301–8.CrossRefPubMedGoogle Scholar
  22. Hans D, Barthe N, Boutroy S, et al. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011a;14:302–12.CrossRefPubMedGoogle Scholar
  23. Hans D, Goertzen AL, Krieg MA, et al. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011b;26:2762–9.CrossRefPubMedGoogle Scholar
  24. Harvey NC, Gluer CC, Binkley N, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone. 2015;78:216–24.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Iki M, Tamaki J, Kadowaki E, et al. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res. 2014;29:399–407.CrossRefPubMedGoogle Scholar
  26. Iki M, Fujita Y, Tamaki J, et al. Trabecular bone score may improve FRAX(R) prediction accuracy for major osteoporotic fractures in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Cohort Study. Osteoporos Int. 2015a;26:1841–8.CrossRefPubMedGoogle Scholar
  27. Iki M, Tamaki J, Sato Y, et al. Age-related normative values of trabecular bone score (TBS) for Japanese women: the Japanese Population-based Osteoporosis (JPOS) study. Osteoporos Int. 2015b;26:245–52.CrossRefPubMedGoogle Scholar
  28. Johnell O, Kanis JA, Oden A, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185–94.CrossRefPubMedGoogle Scholar
  29. Kalder M, Kyvernitakis I, Albert US, et al. Effects of zoledronic acid versus placebo on bone mineral density and bone texture analysis assessed by the trabecular bone score in premenopausal women with breast cancer treatment-induced bone loss: results of the ProBONE II substudy. Osteoporos Int. 2015;26:353–60.CrossRefPubMedGoogle Scholar
  30. Kanis JA, Melton III LJ, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–41.CrossRefPubMedGoogle Scholar
  31. Kanis JA, McCloskey EV, Johansson H, et al. A reference standard for the description of osteoporosis. Bone. 2008;42:467–75.CrossRefPubMedGoogle Scholar
  32. Kanis JA, Oden A, Johansson H, et al. FRAX and its applications to clinical practice. Bone. 2009;44:734–43.CrossRefPubMedGoogle Scholar
  33. Kanis JA, Oden A, McCloskey EV, et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int. 2012;23:2239–56.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical Report. Accessible at http://www.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf. 2007; Last Accessed 8 Mar 2016.
  35. Kim JH, Choi HJ, Ku EJ, et al. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab. 2015;100:475–82.CrossRefPubMedGoogle Scholar
  36. Kocijan R, Muschitz C, Haschka J, et al. Bone structure assessed by HR-pQCT, TBS and DXL in adult patients with different types of osteogenesis imperfecta. Osteoporos Int. 2015;26:2431–40.CrossRefPubMedGoogle Scholar
  37. Kolta S, Briot K, Fechtenbaum J, et al. TBS result is not affected by lumbar spine osteoarthritis. Osteoporos Int. 2014;25:1759–64.CrossRefPubMedGoogle Scholar
  38. Krieg MA, Aubry-Rozier B, Hans D, et al. Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int. 2013;24:1073–8.CrossRefPubMedGoogle Scholar
  39. Krueger D, Fidler E, Libber J, et al. Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J Clin Densitom. 2014;17:60–5.CrossRefPubMedGoogle Scholar
  40. Krueger D, Libber J, Binkley N. Spine trabecular bone score precision, a comparison between GE Lunar Standard and High-Resolution Densitometers. J Clin Densitom. 2015;18:226–32.CrossRefPubMedGoogle Scholar
  41. Kuzma M, Kuzmova Z, Zelinkova Z, et al. Impact of the growth hormone replacement on bone status in growth hormone deficient adults. Growth Horm IGF Res. 2014;24:22–8.CrossRefPubMedGoogle Scholar
  42. Leib E, Winzenrieth R, Aubry-Rozier B, et al. Vertebral microarchitecture and fragility fracture in men: a TBS study. Bone. 2014a;62:51–5.CrossRefPubMedGoogle Scholar
  43. Leib E, Winzenrieth R, Lamy O, et al. Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures. Calcif Tissue Int. 2014b;95:201–8.CrossRefPubMedGoogle Scholar
  44. Leib ES, Winzenrieth R. Bone status in glucocorticoid-treated men and women. Osteoporos Int. 2016;27:39–48.CrossRefPubMedGoogle Scholar
  45. Leslie WD, Aubry-Rozier B, Lamy O, et al. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98:602–9.CrossRefPubMedGoogle Scholar
  46. Leslie WD, Johanson H, Oden A, et al. Improved risk assessment using lumbar spine trabecular bone score (TBS) to adjust fracture probability: the Manitoba BMD Cohort [abstract]. J Bone Miner Res. 2015;29:103.Google Scholar
  47. Leslie WD, Aubry-Rozier B, Lix LM, et al. Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone. 2014a;67:10–4.CrossRefPubMedGoogle Scholar
  48. Leslie WD, Johansson H, Kanis JA, et al. Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos Int. 2014b;25:2271–7.CrossRefPubMedGoogle Scholar
  49. Leslie WD, Lix LM, Morin SN, et al. Difference in spine TBS between men and women: real or technical? [abstract]. J Clin Densitom. 2014c;17:406–7.CrossRefGoogle Scholar
  50. Leslie WD, Winzenrieth R, Majumdar SR, et al. Clinical performance of an updated version of trabecular bone score in men and women: the Manitoba BMD Cohort [abstract]. J Bone Miner Res. 2014d;28:97.Google Scholar
  51. Looker AC, Wahner HW, Dunn WL, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8:468–89.CrossRefPubMedGoogle Scholar
  52. Maquer G, Musy SN, Wandel J, et al. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J Bone Miner Res. 2015;30:1000–8.CrossRefPubMedGoogle Scholar
  53. Maquer G, Lu Y, Dall’Ara E, et al. The Initial Slope of the Variogram, Foundation of the Trabecular Bone Score, Is Not or Is Poorly Associated With Vertebral Strength. J Bone Miner Res. 2016;31:341–6.CrossRefPubMedGoogle Scholar
  54. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.CrossRefPubMedPubMedCentralGoogle Scholar
  55. McCloskey EV, Oden A, Harvey NC, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res. 2016;31(5):940–8. [epub ahead of print].Google Scholar
  56. McCloskey EV, Oden A, Harvey NC, et al. Adjusting fracture probability by trabecular bone score. Calcif Tissue Int. 2015;96:500–9.CrossRefPubMedGoogle Scholar
  57. Muschitz C, Kocijan R, Haschka J, et al. TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone. 2015;79:259–66.CrossRefPubMedGoogle Scholar
  58. Nassar K, Paternotte S, Kolta S, et al. Added value of trabecular bone score over bone mineral density for identification of vertebral fractures in patients with areal bone mineral density in the non-osteoporotic range. Osteoporos Int. 2014;25:243–9.CrossRefPubMedGoogle Scholar
  59. Naylor KL, Lix LM, Hans D, et al. Trabecular bone score in kidney transplant recipients. Osteoporos Int. 2016;27:1115–21.CrossRefPubMedGoogle Scholar
  60. Neumann T, Lodes S, Kastner B, et al. Trabecular bone score in type 1 diabetes-a cross-sectional study. Osteoporos Int. 2016;27:127–33.CrossRefPubMedGoogle Scholar
  61. Paggiosi MA, Peel NF, Eastell R. The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos Int. 2015;26:1773–80.CrossRefPubMedGoogle Scholar
  62. Petranova T, Sheytanov I, Monov S, et al. Denosumab improves bone mineral density and microarchitecture and reduces bone pain in women with osteoporosis with and without glucocorticoid treatment. Biotechnol Biotechnol Equip. 2014;28:1127–37.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Popp AW, Buffat H, Eberli U, et al. Microstructural parameters of bone evaluated using HR-pQCT correlate with the DXA-derived cortical index and the trabecular bone score in a cohort of randomly selected premenopausal women. PLoS One. 2014;9, e88946.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Popp AW, Meer S, Krieg MA, et al. Bone mineral density (BMD) and vertebral trabecular bone score (TBS) for the identification of elderly women at high risk for fracture: the SEMOF cohort study. Eur Spine J. 2015; [Epub ahead of print]Google Scholar
  65. Pothuaud L, Barthe N, Krieg MA, et al. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case–control study. J Clin Densitom. 2009;12:170–6.CrossRefPubMedGoogle Scholar
  66. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone. 2008;42:775–87.CrossRefPubMedGoogle Scholar
  67. Rabier B, Heraud A, Grand-Lenoir C, et al. A multicentre, retrospective case–control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone. 2010;46:176–81.CrossRefPubMedGoogle Scholar
  68. Rolighed L, Rejnmark L, Sikjaer T, et al. Vitamin D treatment in primary hyperparathyroidism: a randomized placebo controlled trial. J Clin Endocrinol Metab. 2014;99:1072–80.CrossRefPubMedGoogle Scholar
  69. Romagnoli E, Cipriani C, Nofroni I, et al. Trabecular Bone Score (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone. 2013;53:154–9.CrossRefPubMedGoogle Scholar
  70. Roux JP, Wegrzyn J, Boutroy S, et al. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int. 2013;24:2455–60.CrossRefPubMedGoogle Scholar
  71. Schousboe JT, Vo T, Taylor BC, et al. Prediction of Incident Major Osteoporotic and Hip Fractures by Trabecular Bone Score (TBS) and Prevalent Radiographic Vertebral Fracture in Older Men. J Bone Miner Res 2016;31(3):690–7.Google Scholar
  72. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.CrossRefPubMedGoogle Scholar
  73. Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011;305:2184–92.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Shepherd JA, Schousboe JT, Broy SB, et al. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18:274–86.CrossRefPubMedGoogle Scholar
  75. Silva BC, Broy SB, Boutroy S, et al. Fracture risk prediction by Non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J Clin Densitom. 2015;18:309–30.CrossRefPubMedGoogle Scholar
  76. Silva BC, Boutroy S, Zhang C, et al. Trabecular bone score (TBS) – a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013a;98:1963–70.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Silva BC, Walker MD, Abraham A, et al. Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and white women. J Clin Densitom. 2013b;16:554–61.CrossRefPubMedGoogle Scholar
  78. Simonelli C, Leib E, Mossman N, et al. Creation of an age-adjusted, dual-energy x-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in non-Hispanic US White women. J Clin Densitom. 2014;17:314–9.CrossRefPubMedGoogle Scholar
  79. Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164:1108–12.CrossRefPubMedGoogle Scholar
  80. Sritara C, Thakkinstian A, Ongphiphadhanakul B, et al. Age-adjusted dual X-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in thai females and males. J Clin Densitom. 2015; [Epub ahead of print]Google Scholar
  81. Stone KL, Seeley DG, Lui LY, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18:1947–54.CrossRefPubMedGoogle Scholar
  82. Touvier J, Winzenrieth R, Johansson H, et al. Fracture discrimination by combined bone mineral density (BMD) and microarchitectural texture analysis. Calcif Tissue Int. 2015;96:274–83.CrossRefPubMedGoogle Scholar
  83. Winzenrieth R, Dufour R, Pothuaud L, et al. A retrospective case–control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int. 2010;86:104–9.CrossRefPubMedGoogle Scholar
  84. Zhukouskaya VV, Ellen-Vainicher C, Gaudio A, et al. The utility of lumbar spine trabecular bone score and femoral neck bone mineral density for identifying asymptomatic vertebral fractures in well-compensated type 2 diabetic patients. Osteoporos Int. 2016;27:49–56.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of MedicineUniversity of ManitobaWinnipegCanada
  2. 2.Department of Medicine, Divisions of Geriatrics and EndocrinologyUniversity of WisconsinMadisonUSA

Personalised recommendations