Advertisement

Biomarker Genes in Autosomal Dominant Osteopetrosis Type II (ADO II)

  • Amélie E. Coudert
  • Marie-Christine de Vernejoul
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Type II autosomal dominant osteopetrosis (ADO II) is a rare genetic disease characterized by an increase in bone mass. This pathology is caused by osteoclast impairment due, in 60% of cases, to CLCN7 heterozygous mutations. ADO II patients present specific X-ray features, but until recently the disease lacked biological markers. It has been demonstrated that elevated serum tartrate-resistant acid phosphatase (TRAP) could be a good marker. In addition, microarray analysis and various validation experiments comparing gene expression levels in osteoclasts from ADO II patients and healthy donors have demonstrated that ITGB5 expression is increased in the former and that PFR1, SERPINE2, and WARS expression are all decreased in ADO II osteoclasts. Of these new biological markers, two are described for the first time in osteoclasts.

Keywords

Osteopetrosis Osteoclasts CLCN7 Microarray Biological markers 

List of Abbreviations

ADO II

Autosomal dominant osteopetrosis type II

CBS

Cystathionine βsynthase

CLCN7

Chloride channel 7

ECM

Extracellular matrix

M-CSF

Macrophage colony-stimulating factor

TRAP

Tartrate-resistant acid phosphatase

v-ATPase

Vacuolar ATPase proton pump

WARS

Tryptophanyl-tRNA synthetase

References

  1. Aker M, Rouvinski A, Hashavia S, et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49(4):221–6.CrossRefPubMedGoogle Scholar
  2. Albers-Schonberg. Rontgenbilder einer seltenen Knockenerkrankung. Munch Med Wochenschr. 1904;(5):365–8.Google Scholar
  3. Baron R. Osteoporosis in 2011: Osteoporosis therapy – dawn of the post-bisphosphonate era. Nat Rev Endocrinol. 2012;8(2):76–8.CrossRefGoogle Scholar
  4. Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant. 2012;27(10):3691–704.CrossRefPubMedGoogle Scholar
  5. Benichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone. 2000;26(1):87–93.CrossRefPubMedGoogle Scholar
  6. Blair HC, Yaroslavskiy BB, Robinson LJ, et al. Osteopetrosis with micro-lacunar resorption because of defective integrin organization. Lab Invest. 2009;89(9):1007–17.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bollerslev J, Henriksen K, Nielsen MF, et al. Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur J Endocrinol. 2013;169(2):R39–57.CrossRefPubMedGoogle Scholar
  8. Campos-Xavier AB, Casanova JL, Doumaz Y, et al. Intrafamilial phenotypic variability of osteopetrosis due to chloride channel 7 (CLCN7) mutations. Am J Med Genet A. 2005;133A:216–8.CrossRefPubMedGoogle Scholar
  9. Cappariello A, Maurizi A, Veeriah V, et al. The great beauty of the osteoclast. Arch Biochem Biophys. 2014;558:70–8.CrossRefPubMedGoogle Scholar
  10. Carter RE, Cerosaletti KM, Burkin DJ, et al. The gene for the serpin thrombin inhibitor (PI7), protease nexin I, is located on human chromosome 2q33-q35 and on syntenic regions in the mouse and sheep genomes. Genomics. 1995;27(1):196–9.CrossRefPubMedGoogle Scholar
  11. Chalhoub N, Benachenhou N, Rajapurohitam V, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003;9(4):399–406.CrossRefPubMedGoogle Scholar
  12. Charles JF, Aliprantis AO. Osteoclasts: more than “bone eaters”. Trends Mol Med. 2014;20(8):449–59.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol. 2008;26:389–420.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chu K, Koller DL, Snyder R, et al. Analysis of variation in expression of autosomal dominant osteopetrosis type 2: searching for modifier genes. Bone. 2005;37(5):655–61.CrossRefPubMedGoogle Scholar
  15. Chu K, Snyder R, Econs MJ. Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties. J Bone Miner Res. 2006;21(7):1089–97.CrossRefPubMedGoogle Scholar
  16. Cleiren E, Benichou O, Van Hul E, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet. 2001;10(25):2861–7.CrossRefPubMedGoogle Scholar
  17. Coudert AE, Del Fattore A, Baulard C, et al. Differentially expressed genes in autosomal dominant osteopetrosis type II osteoclasts reveal known and novel pathways for osteoclast biology. Lab Invest. 2014;94(3):275–85.CrossRefPubMedGoogle Scholar
  18. Daci E, Udagawa N, Martin TJ, et al. The role of the plasminogen system in bone resorption in vitro. J Bone Miner Res. 1999;14(6):946–52.CrossRefPubMedGoogle Scholar
  19. de Vernejoul MC, Kornak U. Heritable sclerosing bone disorders: presentation and new molecular mechanisms. Ann N Y Acad Sci. 2010;1192:269–77.CrossRefPubMedGoogle Scholar
  20. de Vernejoul MC, Schulz A, Kornak U. CLCN7-related osteopetrosis. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.Google Scholar
  21. Del Fattore A, Peruzzi B, Rucci N, et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet. 2006;43(4):315–25.CrossRefPubMedGoogle Scholar
  22. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008a;42(1):19–29.CrossRefPubMedGoogle Scholar
  23. Del Fattore A, Fornari R, Van Wesenbeeck L, et al. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res. 2008b;23(3):380–91.CrossRefPubMedGoogle Scholar
  24. Demeo DL, Mariani TJ, Lange C, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet. 2006;78(2):253–64.CrossRefPubMedGoogle Scholar
  25. Dutzler R. The ClC family of chloride channels and transporters. Curr Opin Struct Biol. 2006;16(4):439–46.CrossRefPubMedGoogle Scholar
  26. Dutzler R, Campbell EB, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002;415(6869):287–94.CrossRefPubMedGoogle Scholar
  27. Frattini A, Pangrazio A, Susani L, et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res. 2003;18:1740–7.CrossRefPubMedGoogle Scholar
  28. Ghanipour A, Jirstrom K, Ponten F, et al. The prognostic significance of tryptophanyl-tRNA synthetase in colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(11):2949–56.CrossRefPubMedGoogle Scholar
  29. Guerrini MM, Sobacchi C, Cassani B, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83(1):64–76.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Henriksen K, Gram J, Schaller S, et al. Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol. 2004;164(5):1537–45.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Henriksen K, Gram J, Hoegh-Andersen P, et al. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo. Am J Pathol. 2005;167(5):1341–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hersh CP, DeMeo DL, Raby BA, et al. Genetic linkage and association analysis of COPD-related traits on chromosome 8p. COPD. 2006;3(4):189–94.CrossRefPubMedGoogle Scholar
  33. Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest. 2001;108(6):779–84.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hoves S, Trapani JA, Voskoboinik I. The battlefield of perforin/granzyme cell death pathways. J Leukoc Biol. 2010;87(2):237–43.CrossRefPubMedGoogle Scholar
  35. Huntington JA. Shape-shifting serpins – advantages of a mobile mechanism. Trends Biochem Sci. 2006;31(8):427–35.CrossRefPubMedGoogle Scholar
  36. Inoue M, Namba N, Chappel J, et al. Granulocyte macrophage-colony stimulating factor reciprocally regulates alphav-associated integrins on murine osteoclast precursors. Mol Endocrinol. 1998;12(12):1955–62.PubMedGoogle Scholar
  37. Inoue M, Ross FP, Erdmann JM, et al. Tumor necrosis factor alpha regulates alpha(v)beta5 integrin expression by osteoclast precursors in vitro and in vivo. Endocrinology. 2000;141(1):284–90.CrossRefPubMedGoogle Scholar
  38. Jensen JK, Dolmer K, Gettins PG. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1. J Biol Chem. 2009;284(27):17989–97.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kagi D, Ledermann B, Burki K, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994;369(6475):31–7.CrossRefPubMedGoogle Scholar
  40. Karsdal MA, Martin TJ, Bollerslev J, et al. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res. 2007;22(4):487–94.CrossRefPubMedGoogle Scholar
  41. Kilic SS, Etzioni A. The clinical spectrum of leukocyte adhesion deficiency (LAD) III due to defective CalDAG-GEF1. J Clin Immunol. 2009;29(1):117–22.CrossRefPubMedGoogle Scholar
  42. Krause SW, Rehli M, Kreutz M, et al. Differential screening identifies genetic markers of monocyte to macrophage maturation. J Leukoc Biol. 1996;60(4):540–5.PubMedGoogle Scholar
  43. Lane NE, Yao W, Nakamura MC, et al. Mice lacking the integrin beta5 subunit have accelerated osteoclast maturation and increased activity in the estrogen-deficient state. J Bone Miner Res. 2005;20(1):58–66.CrossRefPubMedGoogle Scholar
  44. Lange PF, Wartosch L, Jentsch TJ, et al. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 2006;440(7081):220–3.CrossRefPubMedGoogle Scholar
  45. Leisle L, Ludwig CF, Wagner FA, et al. ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J. 2011;30(11):2140–52.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Letizia C, Taranta A, Migliaccio S, et al. Type II benign osteopetrosis (Albers-Schonberg disease) caused by a novel mutation in CLCN7 presenting with unusual clinical manifestations. Calcif Tissue Int. 2004;74:42–6.CrossRefPubMedGoogle Scholar
  47. Li X, Su N, Li C, et al. Genetic analysis of a novel mutation resulting in autosomal dominant osteopetrosis II. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2014;31(5):612–4.PubMedGoogle Scholar
  48. Lo Iacono N, Pangrazio A, Abinun M, et al. RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol. 2013;2013:412768.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Malinin NL, Zhang L, Choi J, et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med. 2009;15(3):313–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mansilla S, Boulaftali Y, Venisse L, et al. Macrophages and platelets are the major source of protease nexin-1 in human atherosclerotic plaque. Arterioscler Thromb Vasc Biol. 2008;28(10):1844–50.CrossRefPubMedGoogle Scholar
  51. McEwan DG, Dikic I. PLEKHM1: adapting to life at the lysosome. Autophagy. 2015;11(4):720–2.CrossRefPubMedPubMedCentralGoogle Scholar
  52. McHugh KP, Hodivala-Dilke K, Zheng MH, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest. 2000;105(4):433–40.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Meins M, Herry C, Muller C, et al. Impaired fear extinction in mice lacking protease nexin-1. Eur J Neurosci. 2010;31(11):2033–42.CrossRefPubMedGoogle Scholar
  54. Motyckova G, Fisher DE. Pycnodysostosis: role and regulation of cathepsin K in osteoclast function and human disease. Curr Mol Med. 2002;2(5):407–21.CrossRefPubMedGoogle Scholar
  55. Olszewski MA, Gray J, Vestal DJ. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters. J Interferon Cytokine Res. 2006;26(5):328–52.CrossRefPubMedGoogle Scholar
  56. Pangrazio A, Pusch M, Caldana E, et al. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum Mutat. 2010;31:E1071–80.CrossRefPubMedGoogle Scholar
  57. Pangrazio A, Fasth A, Sbardellati A, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013;28(5):1041–9.CrossRefPubMedGoogle Scholar
  58. Pipkin ME, Lieberman J. Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol. 2007;19(3):301–8.CrossRefPubMedGoogle Scholar
  59. Pipkin ME, Rao A, Lichtenheld MG. The transcriptional control of the perforin locus. Immunol Rev. 2010;235(1):55–72.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Roberts CM, Angus JE, Leach IH, et al. A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr. 2010;169(11):1403–7.CrossRefPubMedGoogle Scholar
  61. Saftig P, Hunziker E, Everts V, et al. Functions of cathepsin K in bone resorption. Lessons from cathepsin K deficient mice. Adv Exp Med Biol. 2000;477:293–303.CrossRefPubMedGoogle Scholar
  62. Schaller S, Henriksen K, Sveigaard C, et al. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004;19(7):1144–53.CrossRefPubMedGoogle Scholar
  63. Shaw AC, Rossel Larsen M, Roepstorff P, et al. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis. 1999;20(4–5):984–93.CrossRefPubMedGoogle Scholar
  64. Sobacchi C, Frattini A, Orchard P, et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet. 2001;10(17):1767–73.CrossRefPubMedGoogle Scholar
  65. Sobacchi C, Schulz A, Coxon FP, et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36.CrossRefPubMedGoogle Scholar
  66. Teitelbaum SL. The osteoclast and its unique cytoskeleton. Ann N Y Acad Sci. 2011;1240:14–7.CrossRefPubMedGoogle Scholar
  67. van Gent D, Sharp P, Morgan K, et al. Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol. 2003;35(11):1536–47.CrossRefPubMedGoogle Scholar
  68. Van Wesenbeeck L, Odgren PR, Coxon FP, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Voskoboinik I, Dunstone MA, Baran K, et al. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010;235(1):35–54.CrossRefPubMedGoogle Scholar
  70. Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388–400.CrossRefPubMedGoogle Scholar
  71. Wada K, Harada D, Michigami T, et al. A case of autosomal dominant osteopetrosis type II with a novel TCIRG1 gene mutation. J Pediatr Endocrinol Metab. 2013;26(5–6):575–7.PubMedGoogle Scholar
  72. Waguespack SG, Koller DL, White KE, et al. Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res. 2003;18:1513–8.CrossRefPubMedGoogle Scholar
  73. Waguespack SG, Hui SL, Dimeglio LA, et al. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab. 2007;92(3):771–8.CrossRefPubMedGoogle Scholar
  74. Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147–51.CrossRefPubMedGoogle Scholar
  75. Wakasugi K, Slike BM, Hood J, et al. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci U S A. 2002;99(1):173–7.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang C, Zhang H, He JW, et al. The virulence gene and clinical phenotypes of osteopetrosis in the Chinese population: six novel mutations of the CLCN7 gene in twelve osteopetrosis families. J Bone Miner Metab. 2012;30(3):338–48.CrossRefPubMedGoogle Scholar
  77. Wiktor-Jedrzejczak W. Colony stimulating factor 1 (CSF-1) and its in vivo role as delineated using osteopetrotic op/op mice. Postepy Biochem. 1991;37(2):54–7.PubMedGoogle Scholar
  78. Yamashita DS, Dodds RA. Cathepsin K and the design of inhibitors of cathepsin K. Curr Pharm Des. 2000;6(1):1–24.CrossRefPubMedGoogle Scholar
  79. Yang JN, Allan EH, Anderson GI, et al. Plasminogen activator system in osteoclasts. J Bone Miner Res. 1997;12(5):761–8.CrossRefPubMedGoogle Scholar
  80. Zhang ZL, He JW, Zhang H, et al. Identification of the CLCN7 gene mutations in two Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2009;27:444–51.CrossRefPubMedGoogle Scholar
  81. Zhao Q, Wei Q, He A, et al. CLC-7: a potential therapeutic target for the treatment of osteoporosis and neurodegeneration. Biochem Biophys Res Commun. 2009;384(3):277–9.CrossRefPubMedGoogle Scholar
  82. Zheng H, Zhang Z, He J, et al. Identification of two novel CLCN7 gene mutations in three Chinese families with autosomal dominant osteopetrosis type II. Joint Bone Spine. 2014;81:188–9.CrossRefPubMedGoogle Scholar
  83. Zheng H, Shao C, Zheng Y, et al. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2015.Google Scholar
  84. Zhou F. Perforin: more than just a pore-forming protein. Int Rev Immunol. 2010;29(1):56–76.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Molecular Oral Pathophysiology, INSERM UMRS 1138Centre de Recherche des Cordeliers, UFR d’Odontologie, Université Paris DiderotParisFrance
  2. 2.BIOSCAR, INSERM UMRS 1132Hôpital Lariboisière, Université Paris Diderot, Secteur Violet, Porte 4, Bâtiment Viggo PetersenParisFrance

Personalised recommendations