Skip to main content

Biomarker Genes in Autosomal Dominant Osteopetrosis Type II (ADO II)

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Type II autosomal dominant osteopetrosis (ADO II) is a rare genetic disease characterized by an increase in bone mass. This pathology is caused by osteoclast impairment due, in 60% of cases, to CLCN7 heterozygous mutations. ADO II patients present specific X-ray features, but until recently the disease lacked biological markers. It has been demonstrated that elevated serum tartrate-resistant acid phosphatase (TRAP) could be a good marker. In addition, microarray analysis and various validation experiments comparing gene expression levels in osteoclasts from ADO II patients and healthy donors have demonstrated that ITGB5 expression is increased in the former and that PFR1, SERPINE2, and WARS expression are all decreased in ADO II osteoclasts. Of these new biological markers, two are described for the first time in osteoclasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADO II:

Autosomal dominant osteopetrosis type II

CBS:

Cystathionine βsynthase

CLCN7:

Chloride channel 7

ECM:

Extracellular matrix

M-CSF:

Macrophage colony-stimulating factor

TRAP:

Tartrate-resistant acid phosphatase

v-ATPase:

Vacuolar ATPase proton pump

WARS:

Tryptophanyl-tRNA synthetase

References

  • Aker M, Rouvinski A, Hashavia S, et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49(4):221–6.

    Article  CAS  PubMed  Google Scholar 

  • Albers-Schonberg. Rontgenbilder einer seltenen Knockenerkrankung. Munch Med Wochenschr. 1904;(5):365–8.

    Google Scholar 

  • Baron R. Osteoporosis in 2011: Osteoporosis therapy – dawn of the post-bisphosphonate era. Nat Rev Endocrinol. 2012;8(2):76–8.

    Article  CAS  Google Scholar 

  • Batlle D, Haque SK. Genetic causes and mechanisms of distal renal tubular acidosis. Nephrol Dial Transplant. 2012;27(10):3691–704.

    Article  CAS  PubMed  Google Scholar 

  • Benichou OD, Laredo JD, de Vernejoul MC. Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone. 2000;26(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  • Blair HC, Yaroslavskiy BB, Robinson LJ, et al. Osteopetrosis with micro-lacunar resorption because of defective integrin organization. Lab Invest. 2009;89(9):1007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollerslev J, Henriksen K, Nielsen MF, et al. Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur J Endocrinol. 2013;169(2):R39–57.

    Article  CAS  PubMed  Google Scholar 

  • Campos-Xavier AB, Casanova JL, Doumaz Y, et al. Intrafamilial phenotypic variability of osteopetrosis due to chloride channel 7 (CLCN7) mutations. Am J Med Genet A. 2005;133A:216–8.

    Article  PubMed  Google Scholar 

  • Cappariello A, Maurizi A, Veeriah V, et al. The great beauty of the osteoclast. Arch Biochem Biophys. 2014;558:70–8.

    Article  CAS  PubMed  Google Scholar 

  • Carter RE, Cerosaletti KM, Burkin DJ, et al. The gene for the serpin thrombin inhibitor (PI7), protease nexin I, is located on human chromosome 2q33-q35 and on syntenic regions in the mouse and sheep genomes. Genomics. 1995;27(1):196–9.

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub N, Benachenhou N, Rajapurohitam V, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003;9(4):399–406.

    Article  CAS  PubMed  Google Scholar 

  • Charles JF, Aliprantis AO. Osteoclasts: more than “bone eaters”. Trends Mol Med. 2014;20(8):449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol. 2008;26:389–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu K, Koller DL, Snyder R, et al. Analysis of variation in expression of autosomal dominant osteopetrosis type 2: searching for modifier genes. Bone. 2005;37(5):655–61.

    Article  CAS  PubMed  Google Scholar 

  • Chu K, Snyder R, Econs MJ. Disease status in autosomal dominant osteopetrosis type 2 is determined by osteoclastic properties. J Bone Miner Res. 2006;21(7):1089–97.

    Article  CAS  PubMed  Google Scholar 

  • Cleiren E, Benichou O, Van Hul E, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet. 2001;10(25):2861–7.

    Article  CAS  PubMed  Google Scholar 

  • Coudert AE, Del Fattore A, Baulard C, et al. Differentially expressed genes in autosomal dominant osteopetrosis type II osteoclasts reveal known and novel pathways for osteoclast biology. Lab Invest. 2014;94(3):275–85.

    Article  CAS  PubMed  Google Scholar 

  • Daci E, Udagawa N, Martin TJ, et al. The role of the plasminogen system in bone resorption in vitro. J Bone Miner Res. 1999;14(6):946–52.

    Article  CAS  PubMed  Google Scholar 

  • de Vernejoul MC, Kornak U. Heritable sclerosing bone disorders: presentation and new molecular mechanisms. Ann N Y Acad Sci. 2010;1192:269–77.

    Article  PubMed  Google Scholar 

  • de Vernejoul MC, Schulz A, Kornak U. CLCN7-related osteopetrosis. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.

    Google Scholar 

  • Del Fattore A, Peruzzi B, Rucci N, et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet. 2006;43(4):315–25.

    Article  PubMed  Google Scholar 

  • Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008a;42(1):19–29.

    Article  PubMed  Google Scholar 

  • Del Fattore A, Fornari R, Van Wesenbeeck L, et al. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res. 2008b;23(3):380–91.

    Article  PubMed  Google Scholar 

  • Demeo DL, Mariani TJ, Lange C, et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am J Hum Genet. 2006;78(2):253–64.

    Article  CAS  PubMed  Google Scholar 

  • Dutzler R. The ClC family of chloride channels and transporters. Curr Opin Struct Biol. 2006;16(4):439–46.

    Article  CAS  PubMed  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature. 2002;415(6869):287–94.

    Article  CAS  PubMed  Google Scholar 

  • Frattini A, Pangrazio A, Susani L, et al. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and intermediate osteopetrosis. J Bone Miner Res. 2003;18:1740–7.

    Article  CAS  PubMed  Google Scholar 

  • Ghanipour A, Jirstrom K, Ponten F, et al. The prognostic significance of tryptophanyl-tRNA synthetase in colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(11):2949–56.

    Article  CAS  PubMed  Google Scholar 

  • Guerrini MM, Sobacchi C, Cassani B, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83(1):64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksen K, Gram J, Schaller S, et al. Characterization of osteoclasts from patients harboring a G215R mutation in ClC-7 causing autosomal dominant osteopetrosis type II. Am J Pathol. 2004;164(5):1537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksen K, Gram J, Hoegh-Andersen P, et al. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo. Am J Pathol. 2005;167(5):1341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hersh CP, DeMeo DL, Raby BA, et al. Genetic linkage and association analysis of COPD-related traits on chromosome 8p. COPD. 2006;3(4):189–94.

    Article  PubMed  Google Scholar 

  • Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest. 2001;108(6):779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoves S, Trapani JA, Voskoboinik I. The battlefield of perforin/granzyme cell death pathways. J Leukoc Biol. 2010;87(2):237–43.

    Article  CAS  PubMed  Google Scholar 

  • Huntington JA. Shape-shifting serpins – advantages of a mobile mechanism. Trends Biochem Sci. 2006;31(8):427–35.

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Namba N, Chappel J, et al. Granulocyte macrophage-colony stimulating factor reciprocally regulates alphav-associated integrins on murine osteoclast precursors. Mol Endocrinol. 1998;12(12):1955–62.

    CAS  PubMed  Google Scholar 

  • Inoue M, Ross FP, Erdmann JM, et al. Tumor necrosis factor alpha regulates alpha(v)beta5 integrin expression by osteoclast precursors in vitro and in vivo. Endocrinology. 2000;141(1):284–90.

    Article  CAS  PubMed  Google Scholar 

  • Jensen JK, Dolmer K, Gettins PG. Specificity of binding of the low density lipoprotein receptor-related protein to different conformational states of the clade E serpins plasminogen activator inhibitor-1 and proteinase nexin-1. J Biol Chem. 2009;284(27):17989–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagi D, Ledermann B, Burki K, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994;369(6475):31–7.

    Article  CAS  PubMed  Google Scholar 

  • Karsdal MA, Martin TJ, Bollerslev J, et al. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res. 2007;22(4):487–94.

    Article  CAS  PubMed  Google Scholar 

  • Kilic SS, Etzioni A. The clinical spectrum of leukocyte adhesion deficiency (LAD) III due to defective CalDAG-GEF1. J Clin Immunol. 2009;29(1):117–22.

    Article  CAS  PubMed  Google Scholar 

  • Krause SW, Rehli M, Kreutz M, et al. Differential screening identifies genetic markers of monocyte to macrophage maturation. J Leukoc Biol. 1996;60(4):540–5.

    CAS  PubMed  Google Scholar 

  • Lane NE, Yao W, Nakamura MC, et al. Mice lacking the integrin beta5 subunit have accelerated osteoclast maturation and increased activity in the estrogen-deficient state. J Bone Miner Res. 2005;20(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  • Lange PF, Wartosch L, Jentsch TJ, et al. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 2006;440(7081):220–3.

    Article  CAS  PubMed  Google Scholar 

  • Leisle L, Ludwig CF, Wagner FA, et al. ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J. 2011;30(11):2140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letizia C, Taranta A, Migliaccio S, et al. Type II benign osteopetrosis (Albers-Schonberg disease) caused by a novel mutation in CLCN7 presenting with unusual clinical manifestations. Calcif Tissue Int. 2004;74:42–6.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Su N, Li C, et al. Genetic analysis of a novel mutation resulting in autosomal dominant osteopetrosis II. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2014;31(5):612–4.

    CAS  PubMed  Google Scholar 

  • Lo Iacono N, Pangrazio A, Abinun M, et al. RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol. 2013;2013:412768.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malinin NL, Zhang L, Choi J, et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med. 2009;15(3):313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansilla S, Boulaftali Y, Venisse L, et al. Macrophages and platelets are the major source of protease nexin-1 in human atherosclerotic plaque. Arterioscler Thromb Vasc Biol. 2008;28(10):1844–50.

    Article  CAS  PubMed  Google Scholar 

  • McEwan DG, Dikic I. PLEKHM1: adapting to life at the lysosome. Autophagy. 2015;11(4):720–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHugh KP, Hodivala-Dilke K, Zheng MH, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest. 2000;105(4):433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meins M, Herry C, Muller C, et al. Impaired fear extinction in mice lacking protease nexin-1. Eur J Neurosci. 2010;31(11):2033–42.

    Article  PubMed  Google Scholar 

  • Motyckova G, Fisher DE. Pycnodysostosis: role and regulation of cathepsin K in osteoclast function and human disease. Curr Mol Med. 2002;2(5):407–21.

    Article  CAS  PubMed  Google Scholar 

  • Olszewski MA, Gray J, Vestal DJ. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters. J Interferon Cytokine Res. 2006;26(5):328–52.

    Article  CAS  PubMed  Google Scholar 

  • Pangrazio A, Pusch M, Caldana E, et al. Molecular and clinical heterogeneity in CLCN7-dependent osteopetrosis: report of 20 novel mutations. Hum Mutat. 2010;31:E1071–80.

    Article  PubMed  Google Scholar 

  • Pangrazio A, Fasth A, Sbardellati A, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013;28(5):1041–9.

    Article  CAS  PubMed  Google Scholar 

  • Pipkin ME, Lieberman J. Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol. 2007;19(3):301–8.

    Article  CAS  PubMed  Google Scholar 

  • Pipkin ME, Rao A, Lichtenheld MG. The transcriptional control of the perforin locus. Immunol Rev. 2010;235(1):55–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts CM, Angus JE, Leach IH, et al. A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr. 2010;169(11):1403–7.

    Article  PubMed  Google Scholar 

  • Saftig P, Hunziker E, Everts V, et al. Functions of cathepsin K in bone resorption. Lessons from cathepsin K deficient mice. Adv Exp Med Biol. 2000;477:293–303.

    Article  CAS  PubMed  Google Scholar 

  • Schaller S, Henriksen K, Sveigaard C, et al. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004;19(7):1144–53.

    Article  CAS  PubMed  Google Scholar 

  • Shaw AC, Rossel Larsen M, Roepstorff P, et al. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis. 1999;20(4–5):984–93.

    Article  CAS  PubMed  Google Scholar 

  • Sobacchi C, Frattini A, Orchard P, et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet. 2001;10(17):1767–73.

    Article  CAS  PubMed  Google Scholar 

  • Sobacchi C, Schulz A, Coxon FP, et al. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36.

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum SL. The osteoclast and its unique cytoskeleton. Ann N Y Acad Sci. 2011;1240:14–7.

    Article  CAS  PubMed  Google Scholar 

  • van Gent D, Sharp P, Morgan K, et al. Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol. 2003;35(11):1536–47.

    Article  PubMed  Google Scholar 

  • Van Wesenbeeck L, Odgren PR, Coxon FP, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voskoboinik I, Dunstone MA, Baran K, et al. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010;235(1):35–54.

    Article  CAS  PubMed  Google Scholar 

  • Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388–400.

    Article  CAS  PubMed  Google Scholar 

  • Wada K, Harada D, Michigami T, et al. A case of autosomal dominant osteopetrosis type II with a novel TCIRG1 gene mutation. J Pediatr Endocrinol Metab. 2013;26(5–6):575–7.

    CAS  PubMed  Google Scholar 

  • Waguespack SG, Koller DL, White KE, et al. Chloride channel 7 (ClCN7) gene mutations and autosomal dominant osteopetrosis, type II. J Bone Miner Res. 2003;18:1513–8.

    Article  CAS  PubMed  Google Scholar 

  • Waguespack SG, Hui SL, Dimeglio LA, et al. Autosomal dominant osteopetrosis: clinical severity and natural history of 94 subjects with a chloride channel 7 gene mutation. J Clin Endocrinol Metab. 2007;92(3):771–8.

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147–51.

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi K, Slike BM, Hood J, et al. A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci U S A. 2002;99(1):173–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Zhang H, He JW, et al. The virulence gene and clinical phenotypes of osteopetrosis in the Chinese population: six novel mutations of the CLCN7 gene in twelve osteopetrosis families. J Bone Miner Metab. 2012;30(3):338–48.

    Article  PubMed  Google Scholar 

  • Wiktor-Jedrzejczak W. Colony stimulating factor 1 (CSF-1) and its in vivo role as delineated using osteopetrotic op/op mice. Postepy Biochem. 1991;37(2):54–7.

    CAS  PubMed  Google Scholar 

  • Yamashita DS, Dodds RA. Cathepsin K and the design of inhibitors of cathepsin K. Curr Pharm Des. 2000;6(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  • Yang JN, Allan EH, Anderson GI, et al. Plasminogen activator system in osteoclasts. J Bone Miner Res. 1997;12(5):761–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, He JW, Zhang H, et al. Identification of the CLCN7 gene mutations in two Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2009;27:444–51.

    Article  PubMed  Google Scholar 

  • Zhao Q, Wei Q, He A, et al. CLC-7: a potential therapeutic target for the treatment of osteoporosis and neurodegeneration. Biochem Biophys Res Commun. 2009;384(3):277–9.

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Zhang Z, He J, et al. Identification of two novel CLCN7 gene mutations in three Chinese families with autosomal dominant osteopetrosis type II. Joint Bone Spine. 2014;81:188–9.

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Shao C, Zheng Y, et al. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2015.

    Google Scholar 

  • Zhou F. Perforin: more than just a pore-forming protein. Int Rev Immunol. 2010;29(1):56–76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amélie E. Coudert or Marie-Christine de Vernejoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Coudert, A.E., de Vernejoul, MC. (2017). Biomarker Genes in Autosomal Dominant Osteopetrosis Type II (ADO II). In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_20

Download citation

Publish with us

Policies and ethics