Advertisement

Ameloblastin as Biomarker of Bone

  • Juliane Isaac
  • Guilhem Lignon
  • Jaime Jacques
  • Ariane Berdal
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Regional bone diversity has major public health implications. This is exemplified by the tissue incompatibility problems associated with bone ectopic autografts or the puzzling jaw osteonecrosis induced by antiresorptive agents that are otherwise effective in treating long-bone osteoporosis or metastatic resorptive lesions. Identifying bone site-specific biomarkers is therefore essential, firstly to determine why or how bone cell phenotypes vary depending on the anatomical site and secondly to implement new bone site-specific therapeutics. The present chapter summarizes findings on site-specific bone cell profiles and highlights ameloblastin (AMBN) as an exemplary peptide for jaw bone site-specificity. AMBN was originally discovered in tooth enamel matrix, extracts of which have been successfully applied clinically for regeneration of mineralized tissue. AMBN has also been detected outside the enamel in both mineralized and nonmineralized tissues. In bone, functional studies have demonstrated crucial functions of AMBN in the control of bone balance, notably processes associated with a high bone remodeling rate. In contrast to appendicular and axial bones, jaw bones are highly affected by AMBN. For example, AMBN participates in the physiological control of alveolar bone integrity in response to tooth-associated biomechanical stimulation. Based on these observations, AMBN-based treatments have promising clinical potential for craniofacial tissue repair and more specifically for alveolar bone regeneration.

Keywords

Ameloblastin Enamel Osteoblast Bone remodeling Alveolar bone Site-specificity Bone regeneration 

List of Abbreviations

ADAS

Adipose-derived adult stem cell

ALP

Alkaline phosphatase

AMBN

Ameloblastin

AMEL

Amelogenin

BMMC

Bone marrow-derived monocyte/macrophage cell

BMP

Bone morphogenetic protein

BMSC

Bone marrow stromal cell

BP

Bisphosphonate

BRONJ

BP-related osteonecrosis of the jaw

DF

Dental follicle

DFDBA

Demineralized freeze dried bone allograft

ECM

Extracellular matrix

EMD

Enamel matrix derivative

EP

Enamel protein

ERM

Epithelial rest of Malassez

ES

Embryonic stem

FDBA

Freeze dried bone allograft

HERS

Hertwig’s epithelial root sheath

hOMSC

Human oral mucosa stem cell

HOX

Homeobox

IHC

Immunohistochemistry

ISH

In situ hybridization

IUP

Intrinsically unstructured protein

KLK4

Kallikrein 4

LCM

Laser capture microdissection

LNA

Lock nucleic acid

LRAP

Leucine rich amelogenin peptide

MMP

Metalloprotease

MSC

Mesenchymal stem cell

MSX

Muscle segment homeobox

NB

Northern blot

NBM

Natural bovine mineral

NHO

Normal human osteoblast

Ocn

Osteocalcin

Opg

Osteoprotegerin

Opn

Osteopontin

PBMC

Peripheral blood mononuclear cell

PDL

Periodontal ligament

PTH

Parathyroid hormone

RANK

Receptor activator of nuclear factor kappa b

RANKL

Receptor activator of nuclear factor kappa b ligand

RNA

Ribonucleic acid

RT-PCR

Reverse transcription polymerase chain reaction

RT-qPCR

Reverse transcription quantitative polymerase chain reaction

SCC

Squamous cell carcinoma

SCPP

Secretory calcium-binding phosphoprotein

Seq

Sequencing

SIBLING

Small integrin binding ligand N-linked glycoprotein

SPARC

Secreted protein, acidic, cysteine-rich

STAT

Signal transducer and activator of transcription

WB

Western blot

References

  1. Aioub M, Lezot F, Molla M, et al. Msx2 −/− transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis. Bone. 2007;41(5):851–9.CrossRefPubMedGoogle Scholar
  2. Alikhani M, Khoo E, Alyami B, et al. Osteogenic effect of high-frequency acceleration on alveolar bone. J Dent Res. 2012;91(4):413–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atsawasuwan P, Lu X, Ito Y, et al. Expression and function of enamel-related gene products in calvarial development. J Dent Res. 2013a;92(7):622–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Atsawasuwan P, Lu X, Ito Y, et al. Ameloblastin inhibits cranial suture closure by modulating MSX2 expression and proliferation. PLoS One. 2013b;8(4):e52800.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Atwood DA, Coy WA. Clinical, cephalometric, and densitometric study of reduction of residual ridges. J Prosthet Dent. 1971;26(3):280–95.CrossRefPubMedGoogle Scholar
  6. Begue-Kirn C, Krebsbach PH, Bartlett JD, et al. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci. 1998;106(5):963–70.CrossRefPubMedGoogle Scholar
  7. Beyeler M, Schild C, Lutz R, et al. Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. Exp Cell Res. 2010;316(7):1202–12.CrossRefPubMedGoogle Scholar
  8. Casey AT, Hayward RD, Harkness WF, et al. The use of autologous skull bone grafts for posterior fusion of the upper cervical spine in children. Spine (Phila Pa 1976). 1995;20(20):2217–20.CrossRefGoogle Scholar
  9. Cerny R, Slaby I, Hammarstrom L, et al. A novel gene expressed in rat ameloblasts codes for proteins with cell binding domains. J Bone Miner Res. 1996;11(7):883–91.CrossRefPubMedGoogle Scholar
  10. Chai Y, Jiang X, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127(8):1671–9.PubMedGoogle Scholar
  11. Deckelbaum RA, Holmes G, Zhao Z, et al. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development. 2012;139(7):1346–58.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Deutsch D, Haze-Filderman A, Blumenfeld A, et al. Amelogenin, a major structural protein in mineralizing enamel, is also expressed in soft tissues: brain and cells of the hematopoietic system. Eur J Oral Sci. 2006;114 Suppl 1:183–9; discussion 201–182, 381.CrossRefPubMedGoogle Scholar
  13. Diekwisch TG. The developmental biology of cementum. Int J Dev Biol. 2001;45(5–6):695–706.PubMedGoogle Scholar
  14. Dori F, Arweiler NB, Szanto E, et al. Ten-year results following treatment of intrabony defects with an enamel matrix protein derivative combined with either a natural bone mineral or a beta-tricalcium phosphate. J Periodontol. 2013;84(6):749–57.CrossRefPubMedGoogle Scholar
  15. Du Z, Steck R, Doan N, et al. Estrogen deficiency-associated bone loss in the maxilla: a methodology to quantify the changes in the maxillary intra-radicular alveolar bone in an ovariectomized rat osteoporosis model. Tissue Eng Part C Methods. 2015;21(5):458–66.CrossRefPubMedGoogle Scholar
  16. Fong CD, Hammarstrom L. Expression of amelin and amelogenin in epithelial root sheath remnants of fully formed rat molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(2):218–23.CrossRefPubMedGoogle Scholar
  17. Fong CD, Cerny R, Hammarstrom L, et al. Sequential expression of an amelin gene in mesenchymal and epithelial cells during odontogenesis in rats. Eur J Oral Sci. 1998;106 Suppl 1:324–30.CrossRefPubMedGoogle Scholar
  18. Fukae M, Kanazashi M, Nagano T, et al. Porcine sheath proteins show periodontal ligament regeneration activity. Eur J Oral Sci. 2006;114 Suppl 1:212–8; discussion 254–216, 381–212.CrossRefPubMedGoogle Scholar
  19. Fukumoto S, Kiba T, Hall B, et al. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol. 2004;167(5):973–83.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fushiki R, Mayahara K, Ogawa M, et al. High-magnitude mechanical strain inhibits the differentiation of bone-forming rat calvarial progenitor cells. Connect Tissue Res. 2015;56(4):336–41.CrossRefPubMedGoogle Scholar
  21. Gibson CW. The amelogenin “enamel proteins” and cells in the periodontium. Crit Rev Eukaryot Gene Expr. 2008;18(4):345–60.CrossRefPubMedGoogle Scholar
  22. Gibson CW, Yuan ZA, Hall B, et al. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem. 2001;276(34):31871–5.CrossRefPubMedGoogle Scholar
  23. Gonzalez O, Fong KD, Trindade MC, et al. Fluid shear stress magnitude, duration, and total applied load regulate gene expression and nitric oxide production in primary calvarial osteoblast cultures. Plast Reconstr Surg. 2008;122(2):419–28.CrossRefPubMedGoogle Scholar
  24. Grandin HM, Gemperli AC, Dard M. Enamel matrix derivative: a review of cellular effects in vitro and a model of molecular arrangement and functioning. Tissue Eng Part B Rev. 2012;18(3):181–202.CrossRefPubMedGoogle Scholar
  25. Gruenbaum-Cohen Y, Tucker AS, Haze A, et al. Amelogenin in cranio-facial development: the tooth as a model to study the role of amelogenin during embryogenesis. J Exp Zool B Mol Dev Evol. 2009;312B(5):445–57.CrossRefPubMedGoogle Scholar
  26. Hasegawa N, Kawaguchi H, Ogawa T, et al. Immunohistochemical characteristics of epithelial cell rests of Malassez during cementum repair. J Periodontal Res. 2003;38(1):51–6.CrossRefPubMedGoogle Scholar
  27. Hatakeyama J, Philp D, Hatakeyama Y, et al. Amelogenin-mediated regulation of osteoclastogenesis, and periodontal cell proliferation and migration. J Dent Res. 2006;85(2):144–9.CrossRefPubMedGoogle Scholar
  28. Haze A, Taylor AL, Blumenfeld A, et al. Amelogenin expression in long bone and cartilage cells and in bone marrow progenitor cells. Anat Rec (Hoboken). 2007;290(5):455–60.CrossRefGoogle Scholar
  29. Haze A, Taylor AL, Haegewald S, et al. Regeneration of bone and periodontal ligament induced by recombinant amelogenin after periodontitis. J Cell Mol Med. 2009;13(6):1110–24.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Heijl L. Periodontal regeneration with enamel matrix derivative in one human experimental defect. A case report. J Clin Periodontol. 1997;24(9 Pt 2):693–6.PubMedGoogle Scholar
  31. Hu JC, Yamakoshi Y, Yamakoshi F, et al. Proteomics and genetics of dental enamel. Cells Tissues Organs. 2005;181(3–4):219–31.PubMedGoogle Scholar
  32. Iizuka S, Kudo Y, Yoshida M, et al. Ameloblastin regulates osteogenic differentiation by inhibiting Src kinase via cross talk between integrin beta1 and CD63. Mol Cell Biol. 2011;31(4):783–92.CrossRefPubMedGoogle Scholar
  33. Inai T, Kukita T, Ohsaki Y, et al. Immunohistochemical demonstration of amelogenin penetration toward the dental pulp in the early stages of ameloblast development in rat molar tooth germs. Anat Rec. 1991;229(2):259–70.CrossRefPubMedGoogle Scholar
  34. Isaac J, Erthal J, Gordon J, et al. DLX3 regulates bone mass by targeting genes supporting osteoblast differentiation and mineral homeostasis in vivo. Cell Death Differ. 2014;21(9):1365–76.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jacques J, Hotton D, Asselin A, et al. Ameloblastin as a putative marker of specific bone compartments. Connect Tissue Res. 2014a;55 Suppl 1:117–20.CrossRefPubMedGoogle Scholar
  36. Jacques J, Hotton D, De la Dure-Molla M, et al. Tracking endogenous amelogenin and ameloblastin in vivo. PLoS One. 2014b;9(6):e99626.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev. 2000;92(1):19–29.CrossRefPubMedGoogle Scholar
  38. Kanazashi M, Gomi K, Nagano T, et al. The 17-kDa sheath protein in enamel proteins induces cementum regeneration in experimental cavities created in a buccal dehiscence model of dogs. J Periodontal Res. 2006;41(3):193–9.CrossRefPubMedGoogle Scholar
  39. Kasperk C, Wergedal J, Strong D, et al. Human bone cell phenotypes differ depending on their skeletal site of origin. J Clin Endocrinol Metab. 1995;80(8):2511–7.PubMedGoogle Scholar
  40. Kingsmill VJ, McKay IJ, Ryan P, et al. Gene expression profiles of mandible reveal features of both calvarial and ulnar bones in the adult rat. J Dent. 2013;41(3):258–64.CrossRefPubMedGoogle Scholar
  41. Krebsbach PH, Lee SK, Matsuki Y, et al. Full-length sequence, localization, and chromosomal mapping of ameloblastin. A novel tooth-specific gene. J Biol Chem. 1996;271(8):4431–5.CrossRefPubMedGoogle Scholar
  42. Kuroda S, Wazen R, Sellin K, et al. Ameloblastin is not implicated in bone remodelling and repair. Eur Cell Mater. 2011;22:56–66; discussion 66–57.CrossRefPubMedGoogle Scholar
  43. Lagerstrom M, Dahl N, Nakahori Y, et al. A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics. 1991;10(4):971–5.CrossRefPubMedGoogle Scholar
  44. Landin MA, Shabestari M, Babaie E, et al. Gene expression profiling during murine tooth development. Front Genet. 2012;3:139.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Leucht P, Kim JB, Amasha R, et al. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development. 2008;135(17):2845–54.CrossRefPubMedGoogle Scholar
  46. Li Y, Yuan ZA, Aragon MA, et al. Comparison of body weight and gene expression in amelogenin null and wild-type mice. Eur J Oral Sci. 2006;114 Suppl 1:190–3; discussion 201–192, 381.CrossRefPubMedGoogle Scholar
  47. Lignon G, de la Dure-Molla M, Dessombz A, et al. Enamel: a unique self-assembling in mineral world. Med Sci (Paris). 2015;31(5):515–21.CrossRefGoogle Scholar
  48. Liu H, Guo J, Wang L, et al. Distinctive anabolic roles of 1,25-dihydroxyvitamin D(3) and parathyroid hormone in teeth and mandible versus long bones. J Endocrinol. 2009;203(2):203–13.CrossRefPubMedGoogle Scholar
  49. Liu XL, Li CL, Lu WW, et al. Skeletal site-specific response to ovariectomy in a rat model: change in bone density and microarchitecture. Clin Oral Implants Res. 2015;26(4):392–8.CrossRefPubMedGoogle Scholar
  50. Lu X, Ito Y, Kulkarni A, et al. Ameloblastin-rich enamel matrix favors short and randomly oriented apatite crystals. Eur J Oral Sci. 2011;119 Suppl 1:254–60.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lu X, Ito Y, Atsawasuwan P, et al. Ameloblastin modulates osteoclastogenesis through the integrin/ERK pathway. Bone. 2013;54(1):157–68.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lyngstadaas SP, Wohlfahrt JC, Brookes SJ, et al. Enamel matrix proteins; old molecules for new applications. Orthod Craniofac Res. 2009;12(3):243–53.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115–7.CrossRefPubMedGoogle Scholar
  54. Maycock J, Wood SR, Brookes SJ, et al. Characterization of a porcine amelogenin preparation, EMDOGAIN, a biological treatment for periodontal disease. Connect Tissue Res. 2002;43(2–3):472–6.CrossRefPubMedGoogle Scholar
  55. Meredith RW, Zhang G, Gilbert MT, et al. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science. 2014;346(6215):1254390.CrossRefPubMedGoogle Scholar
  56. Molla M, Descroix V, Aioub M, et al. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice. Am J Pathol. 2010;177(5):2516–26.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Muller WE, Boreiko A, Wang X, et al. Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcif Tissue Int. 2007;81(5):382–93.CrossRefPubMedGoogle Scholar
  58. Nakamura Y, Slaby I, Spahr A, et al. Ameloblastin fusion protein enhances pulpal healing and dentin formation in porcine teeth. Calcif Tissue Int. 2006;78(5):278–84.CrossRefPubMedGoogle Scholar
  59. Nanci A. Enamel: composition, formation, and structure. In: Ten Cate’s oral histology: development, structure, and function. 8th ed. Mosby-Elsevier: St. Louis, Mo. 2013. p. 122–63.Google Scholar
  60. Nebgen DR, Inoue H, Sabsay B, et al. Identification of the chondrogenic-inducing activity from bovine dentin (bCIA) as a low-molecular-mass amelogenin polypeptide. J Dent Res. 1999;78(9):1484–94.CrossRefPubMedGoogle Scholar
  61. Nishiguchi M, Yuasa K, Saito K, et al. Amelogenin is a negative regulator of osteoclastogenesis via downregulation of RANKL, M-CSF and fibronectin expression in osteoblasts. Arch Oral Biol. 2007;52(3):237–43.CrossRefPubMedGoogle Scholar
  62. Nunez J, Sanz M, Hoz-Rodriguez L, et al. Human cementoblasts express enamel-associated molecules in vitro and in vivo. J Periodontal Res. 2010;45(6):809–14.CrossRefPubMedGoogle Scholar
  63. Oida S, Nagano T, Yamakoshi Y, et al. Amelogenin gene expression in porcine odontoblasts. J Dent Res. 2002;81(2):103–8.CrossRefPubMedGoogle Scholar
  64. Perdigao PF, Gomez RS, Pimenta FJ, et al. Ameloblastin gene (AMBN) mutations associated with epithelial odontogenic tumors. Oral Oncol. 2004;40(8):841–6.CrossRefPubMedGoogle Scholar
  65. Poulter JA, Murillo G, Brookes SJ, et al. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta. Hum Mol Genet. 2014;23(20):5317–24.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rawlinson SC, Mosley JR, Suswillo RF, et al. Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain. J Bone Miner Res. 1995;10(8):1225–32.CrossRefPubMedGoogle Scholar
  67. Rawlinson SC, Boyde A, Davis GR, et al. Ovariectomy vs. hypofunction: their effects on rat mandibular bone. J Dent Res. 2009a;88(7):615–20.CrossRefPubMedGoogle Scholar
  68. Rawlinson SC, McKay IJ, Ghuman M, et al. Adult rat bones maintain distinct regionalized expression of markers associated with their development. PLoS One. 2009b;4(12):e8358.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Reichert JC, Gohlke J, Friis TE, et al. Mesodermal and neural crest derived ovine tibial and mandibular osteoblasts display distinct molecular differences. Gene. 2013;525(1):99–106.CrossRefPubMedGoogle Scholar
  70. Saito N, Ariyoshi W, Okinaga T, et al. Inhibitory effects of ameloblastin on epithelial cell proliferation. Arch Oral Biol. 2014;59(8):835–40.CrossRefPubMedGoogle Scholar
  71. Snead ML, Zeichner-David M, Chandra T, et al. Construction and identification of mouse amelogenin cDNA clones. Proc Natl Acad Sci U S A. 1983;80(23):7254–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sonoda A, Iwamoto T, Nakamura T, et al. Critical role of heparin binding domains of ameloblastin for dental epithelium cell adhesion and ameloblastoma proliferation. J Biol Chem. 2009;284(40):27176–84.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Spahr A, Lyngstadaas SP, Slaby I, et al. Expression of amelin and trauma-induced dentin formation. Clin Oral Investig. 2002;6(1):51–7.PubMedGoogle Scholar
  74. Spahr A, Lyngstadaas SP, Slaby I, et al. Ameloblastin expression during craniofacial bone formation in rats. Eur J Oral Sci. 2006;114(6):504–11.CrossRefPubMedGoogle Scholar
  75. Tamburstuen MV, Reppe S, Spahr A, et al. Ameloblastin promotes bone growth by enhancing proliferation of progenitor cells and by stimulating immunoregulators. Eur J Oral Sci. 2010;118(5):451–9.CrossRefPubMedGoogle Scholar
  76. Tamburstuen MV, Reseland JE, Spahr A, et al. Ameloblastin expression and putative autoregulation in mesenchymal cells suggest a role in early bone formation and repair. Bone. 2011;48(2):406–13.CrossRefPubMedGoogle Scholar
  77. Treves-Manusevitz S, Hoz L, Rachima H, et al. Stem cells of the lamina propria of human oral mucosa and gingiva develop into mineralized tissues in vivo. J Clin Periodontol. 2013;40(1):73–81.CrossRefPubMedGoogle Scholar
  78. van den Bos T, Speijer D, Bank RA, et al. Differences in matrix composition between calvaria and long bone in mice suggest differences in biomechanical properties and resorption: special emphasis on collagen. Bone. 2008;43(3):459–68.CrossRefPubMedGoogle Scholar
  79. Veis A, Tompkins K, Alvares K, et al. Specific amelogenin gene splice products have signaling effects on cells in culture and in implants in vivo. J Biol Chem. 2000;275(52):41263–72.CrossRefPubMedGoogle Scholar
  80. Vowden P, Romanelli M, Peter R, et al. The effect of amelogenins (Xelma) on hard-to-heal venous leg ulcers. Wound Repair Regen. 2006;14(3):240–6.CrossRefPubMedGoogle Scholar
  81. Vymetal J, Slaby I, Spahr A, et al. Bioinformatic analysis and molecular modelling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein. Eur J Oral Sci. 2008;116(2):124–34.CrossRefPubMedGoogle Scholar
  82. Wazen RM, Moffatt P, Zalzal SF, et al. Local gene transfer to calcified tissue cells using prolonged infusion of a lentiviral vector. Gene Ther. 2006;13(22):1595–602.CrossRefPubMedGoogle Scholar
  83. Wehrhan F, Amann K, Mobius P, et al. BRONJ-related jaw bone is associated with increased Dlx-5 and suppressed osteopontin-implication in the site-specific alteration of angiogenesis and bone turnover by bisphosphonates. Clin Oral Investig. 2015;19(6):1289–98.CrossRefPubMedGoogle Scholar
  84. Yagi Y, Suda N, Yamakoshi Y, et al. In vivo application of amelogenin suppresses root resorption. J Dent Res. 2009;88(2):176–81.CrossRefPubMedGoogle Scholar
  85. Ye L, Le TQ, Zhu L, et al. Amelogenins in human developing and mature dental pulp. J Dent Res. 2006;85(9):814–8.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zeichner-David M, Chen LS, Hsu Z, et al. Amelogenin and ameloblastin show growth-factor like activity in periodontal ligament cells. Eur J Oral Sci. 2006;114 Suppl 1:244–53; discussion 254–246, 381–242.CrossRefPubMedGoogle Scholar
  87. Zhang X, Diekwisch TG, Luan X. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse. Eur J Oral Sci. 2011a;119 Suppl 1:270–9.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang Y, Zhang X, Lu X, et al. Ameloblastin regulates cell attachment and proliferation through RhoA and p27. Eur J Oral Sci. 2011b;119 Suppl 1:280–5.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang Y, Jing D, Buser D, et al. Bone grafting material in combination with Osteogain for bone repair: a rat histomorphometric study. Clin Oral Investig. 2016;20(3):589–595.Google Scholar
  90. Zins JE, Whitaker LA. Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg. 1983;72(6):778–85.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Juliane Isaac
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Guilhem Lignon
    • 1
    • 2
    • 3
    • 4
  • Jaime Jacques
    • 1
    • 7
  • Ariane Berdal
    • 1
    • 2
    • 3
    • 4
    • 5
    • 8
  1. 1.Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Team BerdalCordeliers Research CenterParisFrance
  2. 2.Pierre and Marie Curie University (Paris 6)ParisFrance
  3. 3.Paris Descartes University (Paris 5)ParisFrance
  4. 4.Paris Diderot University (Paris 7)ParisFrance
  5. 5.UFR d’OdontologieParis Diderot University (Paris 7)ParisFrance
  6. 6.Laboratory of Morphogenesis Molecular Genetics, Department of Developmental and Stem Cell Biology, CNRS URA 2578Institut PasteurParisFrance
  7. 7.Periodontology Unit, Department of Stomatology-Faculty of Health ScienceUniversity of TalcaTalcaChile
  8. 8.Reference Center for Buccal and Facial Malformations CRMR MAFACEHopital Rotshild-APHPParisFrance

Personalised recommendations