Advertisement

Osteosarcoma Biomarkers Discovery Using “Omics” Approaches

  • Giulia Bernardini
  • Maurizio Orlandini
  • Federico Galvagni
  • Annalisa Santucci
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Osteosarcoma is the most common malignant primary cancer of bone tissue affecting mostly children and young adults. Nowadays, reliable circulating or cellular/tissue biomarkers do not exist for early diagnosis, drug resistance, and relapses of osteosarcoma. Post-genomics represents an invaluable tool to disclose cancer complexity at a molecular as well as to discover novel diagnostic and prognostic biomarkers.

Although “omics” research on osteosarcoma has only been undertaken recently in respect to that on many other tumor types, these studies have brought to light several potential molecular biomarkers that represent the basis to develop novel and better strategies for early detection, outcome prediction, detection of disease recurrence, and therapeutic approach.

In this chapter, the discovery of such molecular markers through the emerging omics technologies, including miRNA-omics, transcriptomics, and proteomics, will be extensively reviewed.

Keywords

Osteosarcoma Post-genomics Omics approaches miRNA Transcriptomics Proteomics Biomarker 

List of Abbreviations

1DE

Monodimensional polyacrylamide gel electrophoresis

2D-DIGE

Two-dimensional difference in gel electrophoresis

2DE

Two-dimensional polyacrylamide gel electrophoresis

CSC

Cancer stem cell

ELISA

Enzyme-linked immunosorbent assay

ESI

Electrospray ionization

FACS

Fluorescence-activated cell sorting

FT-ICR

Fourier transform ion cyclotron resonance

IHC

Immunohistochemistry

iTRAQ

Isobaric tags for relative and absolute quantitation

LC

Liquid chromatography

LTQ

Linear ion trap

miRNA

Micro RNA

MS

Mass spectrometry

MS/MS

Tandem mass spectrometry

OB

Osteoblast

OC

Osteochondroma

OS

Osteosarcoma

PCA

Principal component analysis

PMF

Peptide mass spectrometry

q RT-PCR

Quantitative real time PCR

QToF

Quadrupole time of flight

SELDI-ToF/MS

Surface-enhanced laser desorption/ionization time of flight mass spectrometry

WB

Western blotting

References

  1. Allen-Rhoades W, Kurenbekova L, Satterfield L, Parikh N, Fuja D, Shuck RL, Rainusso N, Trucco M, Barkauskas DA, Jo E, Ahern C, Hilsenbeck S, Donehower LA, Yustein JT. Cross-species identification of a plasma microRNA signature for detection, therapeutic monitoring, and prognosis in osteosarcoma. Can Med. 2015. doi: 10.1002/cam4.438.Google Scholar
  2. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.CrossRefPubMedGoogle Scholar
  3. Anninga JK, Gelderblom H, Fiocco M, Kroep JR, Taminiau AHM, Hogendoorn PCW, Egeler RM. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer. 2011;47:2431–45.CrossRefPubMedGoogle Scholar
  4. Bernardini G, Braconi D, Spreafico A, Santucci A. Post-genomics of bone metabolic dysfunctions and neoplasias. Proteomics. 2012;12(4–5):708–21.CrossRefPubMedGoogle Scholar
  5. Bernardini G, Laschi M, Geminiani M, Santucci A. Proteomics of osteosarcoma. Expert Rev Proteomics. 2014;11:331–43.CrossRefPubMedGoogle Scholar
  6. Both J, Krijgsman O, Bras J, Schaap GR, Baas F, Ylstra B, Hulsebos TJM. Focal chromosomal copy number aberrations identify CMTM8 and GPR177 as new candidate driver genes in osteosarcoma. PLoS One. 2014;9:e115835.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Botter SM, Neri D, Fuchs B. Recent advances in osteosarcoma. Curr Opin Pharmacol. 2014;16:15–23.CrossRefPubMedGoogle Scholar
  8. Buddingh EP, Kuijjer ML, Duim RAJ, Bürger H, Agelopoulos K, Myklebost O, Serra M, Mertens F, Hogendoorn PCW, Lankester AC, Cleton-Jansen A-M. Tumor-Infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with aacrophage activating agents. Clin Cancer Res. 2011;17:2110–9.CrossRefPubMedGoogle Scholar
  9. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci. 2002;99:15524–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen X, Yang T-T, Qiu X-C, Ji Z-G, Li C-X, Long H, Zhou Y, Ma B-A, Ma Q, Zhang X, Fan Q-Y. Gene expression profiles of human osteosarcoma cell sublines with different pulmonary metastatic potentials. Cancer Biol Ther. 2011;11:287–92.CrossRefPubMedGoogle Scholar
  11. Chen X, Liang H, Zhang J, Zen K, Zhang C. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22:125–32.CrossRefPubMedGoogle Scholar
  12. Chen X, Yang T-T, Zhou Y, Wang W, Qiu X-C, Gao J, Li C-X, Long H, Ma B-A, Ma Q, X-z Z, Yang L-J, Fan Q-Y. Proteomic profiling of osteosarcoma cells identifies ALDOA and SULT1A3 as negative survival markers of human osteosarcoma. Mol Carcinog. 2014;53:138–44.CrossRefPubMedGoogle Scholar
  13. Cleton-Jansen AM, Anninga JK, Briaire-de Bruijn IH, Romeo S, Oosting J, Egeler RM, Gelderblom H, Taminiau AHM, Hogendoorn PCW. Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways. Br J Cancer. 2009;101:1909–18.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Diao C, Guo H, Ouyang Y, Zhang H, Liu L, Bu J, Wang Z, Xiao T. Screening for metastatic osteosarcoma biomarkers with a DNA microarray. Asian Pac J Cancer Prev. 2014;14:1817–22.CrossRefGoogle Scholar
  15. Du X, Yang J, Yang D, Tian W, Zhu Z. The genetic basis for inactivation of Wnt pathway in human osteosarcoma. BMC Cancer. 2014;14:450.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fei D, Li Y, Zhao D, Zhao K, Dai L, Gao Z. Serum miR-9 as a prognostic biomarker in patients with osteosarcoma. J Int Med Res. 2014;42:932–7.CrossRefPubMedGoogle Scholar
  17. Foley J, Scholten D, Monks N, Cherba D, Monsma D, Davidson P, Dylewski D, Dykema K, Winn M, Steensma M. Anoikis-resistant subpopulations of human osteosarcoma display significant chemoresistance and are sensitive to targeted epigenetic therapies predicted by expression profiling. J Transl Med. 2015;13:110.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Folio C, Mora MI, Zalacain M, Corrales FJ, Segura V, Sierrasesumaga L, Toledo G, San-Julian M, Patino-Garcia A. Proteomic analysis of chemonaive pediatric osteosarcomas and corresponding normal bone reveals multiple altered molecular targets. J Proteome Res. 2009;8:3882–8.CrossRefPubMedGoogle Scholar
  19. Geller DS, Gorlick R. Osteosarcoma: a review of diagnosis, management, and treatment strategies. Clin Adv Hematol Oncol. 2010;8(10):705–18.PubMedGoogle Scholar
  20. Gemei M, Corbo C, D’Alessio F, Di Noto R, Vento R, Del Vecchio L. Surface proteomic analysis of differentiated versus stem-like osteosarcoma human cells. Proteomics. 2013;13:3293–7.CrossRefPubMedGoogle Scholar
  21. Gu J, Li J, Huang M, Zhang Z, Li D, Song G, Ding X, Li W. Identification of osteosarcoma-related specific proteins in serum samples using surface-enhanced laser desorption/ionization-time-of-flight mass spectrometry. J Immunol Res. 2014;2014:649075.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guo QC, Shen JN, Jin S, Wang J, Huang G, Zhang LJ, Huang G, Yin JQ, Zou CY, Li MT. Comparative proteomic analysis of human osteosarcoma and SV40-immortalized normal osteoblastic cell lines. Acta Pharmacol Sin. 2007;28:850–8.CrossRefPubMedGoogle Scholar
  23. Guo S, Bai R, Liu W, Zhao A, Zhao Z, Wang Y, Wang Y, Zhao W, Wang W. miR-22 inhibits osteosarcoma cell proliferation and migration by targeting HMGB1 and inhibiting HMGB1-mediated autophagy. Tumor Biol. 2014;35:7025–34.CrossRefGoogle Scholar
  24. He X, He L, Hannon GJ. The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67:11099–101.CrossRefPubMedGoogle Scholar
  25. Hua Y, Jia X, Sun M, Zheng L, Yin L, Zhang L, Cai Z. Plasma membrane proteomic analysis of human osteosarcoma and osteoblastic cells: revealing NDRG1 as a marker for osteosarcoma. Tumour Biol. 2011;32:1013–21.CrossRefPubMedGoogle Scholar
  26. Jin S, Shen JN, Guo QC, Zhou JG, Wang J, Huang G, Zou CY, Yin JQ, Liu SJ, Liu W, Li MT, Wang LN. 2-D DIGE and MALDI-TOF-MS analysis of the serum proteome in human osteosarcoma. Proteomics Clin Appl. 2007;1:272–85.CrossRefPubMedGoogle Scholar
  27. Jin S, Shen JN, Peng JQ, Wang J, Huang G, Li MT. Increased expression of serum gelsolin in patients with osteosarcoma. Chin Med J (Engl). 2012;125:262–9.Google Scholar
  28. Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, Lovat F, LeBlanc K, Palatini J, Randall RL, Volinia S, Stein GS, Croce CM, Lian JB, Aqeilan RI. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 2012;72:1865–77.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PFM, Simmons PJ, Dawid IB, Thomas DM. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest. 2009;119:837–51.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kawai A, Kondo T, Suehara Y, Kikuta K, Hirohashi S. Global protein-expression analysis of bone and soft tissue sarcomas. Clin Orthop Relat Res. 2008;466:2099–106.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kelly A, Haibe-Kains B, Janeway K, Hill K, Howe E, Goldsmith J, Kurek K, Perez-Atayde A, Francoeur N, Fan J, April C, Schneider H, Gebhardt M, Culhane A, Quackenbush J, Spentzos D. MicroRNA paraffin-based studies in osteosarcoma reveal reproducible independent prognostic profiles at 14q32. Genome Med. 2013;5:2.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kikuta K, Tochigi N, Saito S, Shimoda T, Morioka H, Toyama Y, Hosono A, Suehara Y, Beppu Y, Kawai A, Hirohashi S, Kondo T. Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in osteosarcoma revealed by proteomics. Proteomics Clin Appl. 2010;4:560–7.PubMedGoogle Scholar
  33. Kresse SH, Ohnstad HO, Paulsen EB, Bjerkehagen B, Szuhai K, Serra M, Schaefer K-L, Myklebost O, Meza-Zepeda LA. LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization. Genes Chromosomes Cancer. 2009;48:679–93.CrossRefPubMedGoogle Scholar
  34. Kresse SH, Rydbeck H, Skårn M, Namløs HM, Barragan-Polania AH, Cleton-Jansen A-M, Serra M, Liestøl K, Hogendoorn PCW, Hovig E, Myklebost O, Meza-Zepeda LA. Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma. PLoS One. 2012;7:e48262.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kubista B, Klinglmueller F, Bilban M, Pfeiffer M, Lass R, Giurea A, Funovics P, Toma C, Dominkus M, Kotz R, Thalhammer T, Trieb K, Zettl T, Singer C. Microarray analysis identifies distinct gene expression profiles associated with histological subtype in human osteosarcoma. Int Orthop. 2011;35:401–11.CrossRefPubMedGoogle Scholar
  36. Kubota D, Mukaihara K, Yoshida A, Tsuda H, Kawai A, Kondo T. Proteomics study of open biopsy samples identifies peroxiredoxin 2 as a predictive biomarker of response to induction chemotherapy in osteosarcoma. J Proteomics. 2013;91:393–404.CrossRefPubMedGoogle Scholar
  37. Kuijjer ML, Rydbeck H, Kresse SH, Buddingh EP, Lid AB, Roelofs H, Bürger H, Myklebost O, Hogendoorn PCW, Meza-Zepeda LA, Cleton-Jansen A-M. Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes Chromosomes Cancer. 2012;51:696–706.CrossRefPubMedGoogle Scholar
  38. Kuijjer ML, Hogendoorn PCW, Cleton-Jansen A-M. Genome-wide analyses on high-grade osteosarcoma: making sense of a genomically most unstable tumor. Int J Cancer. 2013;133:2512–21.PubMedGoogle Scholar
  39. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.CrossRefPubMedGoogle Scholar
  40. Li Y, DanTA SJ, Perlaky L, Hicks J, Murray J, Meyer W, Chintagumpala M, Lau CC, Man TK. Identification of a plasma proteomic signature to distinguish pediatric osteosarcoma from benign osteochondroma. Proteomics. 2006;6:3426–35.CrossRefPubMedGoogle Scholar
  41. Li G, Zhang W, Zeng H, Chen L, Wang W, Liu J, Zhang Z, Cai Z. An integrative multi-platform analysis for discovering biomarkers of osteosarcoma. BMC Cancer. 2009;9:150.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li Y, Liang Q, Wen YQ, Chen LL, Wang LT, Liu YL, Luo CQ, Liang HZ, Li MT, Li Z. Comparative proteomics analysis of human osteosarcomas and benign tumor of bone. Cancer Genet Cytogenet. 2010;198:97–106.CrossRefPubMedGoogle Scholar
  43. Li Y, Dang TA, Shen J, Hicks J, Chintagumpala M, Lau CC, Man TK. Plasma proteome predicts chemotherapy response in osteosarcoma patients. Oncol Rep. 2011;25:303–14.PubMedGoogle Scholar
  44. Li Y, Zhang J, Zhang L, Si M, Yin H, Li J. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling. Carcinogenesis. 2013;34:1601–10.CrossRefPubMedGoogle Scholar
  45. Lian F, Cui Y, Zhou C, Gao K, Wu L. Identification of a plasma four-microRNA panel as potential noninvasive biomarker for osteosarcoma. PLoS One. 2015;10:e0121499.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu X, Zeng B, Ma J, Wan C. Comparative proteomic analysis of osteosarcoma cell and human primary cultured osteoblastic cell. Cancer Invest. 2009;27:345–52.CrossRefPubMedGoogle Scholar
  47. Lockwood WW, Stack D, Morris T, Grehan D, O’Keane C, Stewart GL, Cumiskey J, Lam WL, Squire JA, Thomas DM, O’Sullivan MJ. Cyclin E1 is amplified and overexpressed in osteosarcoma. J Mol Diagn. 2011;13:289–96.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ma W, Zhang X, Chai J, Chen P, Ren P, Gong M. Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma. Tumor Biol. 2014;35:12467–72.CrossRefGoogle Scholar
  49. Muff R, Ram Kumar RM, Botter SM, Born W, Fuchs B. Genes regulated in metastatic osteosarcoma: evaluation by microarray analysis in four human and two mouse cell line systems. Sarcoma. 2012;2012:937506.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nagao-Kitamoto H, Setoguchi T, Kitamoto S, Nakamura S, Tsuru A, Nagata M, Nagano S, Ishidou Y, Yokouchi M, Kitajima S, Yoshioka T, Maeda S, Yonezawa S, Komiya S. Ribosomal protein S3 regulates GLI2-mediated osteosarcoma invasion. Cancer Lett. 2015;356:855–61.CrossRefPubMedGoogle Scholar
  51. Niu F, Zhao S, Xu C, Chen L, Ye L, Bi G, Tian G, Gong P, Nie T. Identification and functional analysis of differentially expressed genes related to metastatic osteosarcoma. Asian Pac J Cancer Prev. 2014;15:10797–801.CrossRefPubMedGoogle Scholar
  52. O’Donoghue L, Ptitsyn A, Kamstock D, Siebert J, Thomas R, Duval D. Expression profiling in canine osteosarcoma: identification of biomarkers and pathways associated with outcome. BMC Cancer. 2010;10:506.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ouyang L, Liu P, Yang S, Ye S, Xu W, Liu X. A three-plasma miRNA signature serves as novel biomarkers for osteosarcoma. Med Oncol. 2012;30(1):340.CrossRefPubMedGoogle Scholar
  54. Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, Neumann A, Korsching E. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation. Database. 2014; 2014:1–9. pii: bau042.Google Scholar
  55. Posthumadeboer J, Piersma SR, Pham TV, van Egmond PW, Knol JC, Cleton-Jansen AM, van Geer MA, van Beusechem VW, Kaspers GJ, van Royen BJ, Jimenez CR, Helder MN. Surface proteomic analysis of osteosarcoma identifies EPHA2 as receptor for targeted drug delivery. Br J Cancer. 2013;109:2142–54.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ram Kumar R, Betz M, Robl B, Born W, Fuchs B. DeltaNp63alpha enhances the oncogenic phenotype of osteosarcoma cells by inducing the expression of GLI2. BMC Cancer. 2014;14:559.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8:23–36.CrossRefPubMedGoogle Scholar
  58. Rao UN, Hood BL, Jones-Laughner JM, Sun M, Conrads TP. Distinct profiles of oxidative stress-related and matrix proteins in adult bone and soft tissue osteosarcoma and desmoid tumors: a proteomics study. Hum Pathol. 2013;44:725–33.CrossRefPubMedGoogle Scholar
  59. Reddy K. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sabile AA, Arlt MJE, Muff R, Husmann K, Hess D, Bertz J, Langsam B, Aemisegger C, Ziegler U, Born W, Fuchs B. Caprin-1, a novel Cyr61-interacting protein, promotes osteosarcoma tumor growth and lung metastasis in mice. Biochim Biophys Acta. 2013;1832:1173–82.CrossRefPubMedGoogle Scholar
  61. Sadikovic B, Yoshimoto M, Chilton-MacNeill S, Thorner P, Squire JA, Zielenska M. Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Hum Mol Genet. 2009;18:1962–75.CrossRefPubMedGoogle Scholar
  62. Saini V, Hose CD, Monks A, Nagashima K, Han B, Newton DL, Millione A, Shah J, Hollingshead MG, Hite KM, Burkett MW, Delosh RM, Silvers TE, Scudiero DA, Shoemaker RH. Identification of CBX3 and ABCA5 as putative biomarkers for tumor stem cells in osteosarcoma. PLoS One. 2012;7:e41401.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM, Aqeilan RI. miR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget. 2015;6(7):4920–35.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sallam RM. Proteomics in cancer biomarkers discovery: challenges and applications. Dis Markers. 2014;2015:321370.Google Scholar
  65. Seong BKA, Lau J, Adderley T, Kee L, Chaukos D, Pienkowska M, Malkin D, Thorner P, Irwin MS. SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene. 2014;34(27):3582–92.CrossRefPubMedGoogle Scholar
  66. Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA. 2009;15:1443–61.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Spreafico A, Frediani B, Capperucci C, Chellini F, Paffetti A, D’Ambrosio C, Bernardini G, Mini R, Collodel G, Scaloni A, Marcolongo R, Santucci A. A proteomic study on human osteoblastic cells proliferation and differentiation. Proteomics. 2006;6:3520–32.CrossRefPubMedGoogle Scholar
  68. Su Y, Wagner ER, Luo Q, Huang J, Chen L, He BC, Zuo GW, Shi Q, Zhang BQ, Zhu G, Bi Y, Luo J, Luo X, Kim SH, Shen J, Rastegar F, Huang E, Gao Y, Gao JL, Yang K, Wietholt C, Li M, Qin J, Haydon RC, He TC, Luu HH. Insulin-like growth factor binding protein 5 suppresses tumor growth and metastasis of human osteosarcoma. Oncogene. 2011;30:3907–17.CrossRefPubMedGoogle Scholar
  69. Sutter NB, Ostrander EA. Dog star rising: the canine genetic system. Nat Rev Genet. 2004;5:900–10.CrossRefPubMedGoogle Scholar
  70. Tian Q, Jia J, Ling S, Liu Y, Yang S, Shao Z. A causal role for circulating miR-34b in osteosarcoma. Eur J Surg Oncol. 2014a;40:67–72.CrossRefPubMedGoogle Scholar
  71. Tian Y, Zhang YZ, Chen W. MicroRNA-199a-3p and microRNA-34a regulate apoptosis in human osteosarcoma cells. Biosci Rep. 2014b;34:281–6.CrossRefGoogle Scholar
  72. Wang Q. Identification of biomarkers for metastatic osteosarcoma based on DNA microarray data. Neoplasma. 2015;62:365–71.CrossRefPubMedGoogle Scholar
  73. Wang Z, Cai H, Lin L, Tang M, Cai H. Upregulated expression of microRNA-214 is linked to tumor progression and adverse prognosis in pediatric osteosarcoma. Pediatr Blood Cancer. 2014;61:206–10.CrossRefPubMedGoogle Scholar
  74. Wang G, Shen N, Cheng L, Lin J, Li K. Downregulation of miR-22 acts as an unfavorable prognostic biomarker in osteosarcoma. Tumor Biol. 2015a. doi: 10.1007/s13277-015-3379-1.Google Scholar
  75. Wang Y, Jia L, Yuan W, Wu Z, Wang H, Xu T, Sun J, Cheng K, Shi J. Low miR-34a and miR-192 are associated with unfavorable prognosis in patients suffering from osteosarcoma. Am J Transl Res. 2015b;7:111–9.PubMedPubMedCentralGoogle Scholar
  76. Wu X, Zhong D, Gao Q, Zhai W, Ding Z, Wu J. MicroRNA-34a inhibits human osteosarcoma proliferation by downregulating ether à go-go 1 expression. Int J Med Sci. 2013;10:676–82.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Xu SH, Yang Y, Han SM, Wu ZH. MicroRNA-9 expression is a prognostic biomarker in patients with osteosarcoma. World J Surg Oncol. 2014;12:195.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, Ma B. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One. 2012;7:e33778.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yang J, Yang D, Sun Y, Sun B, Wang G, Trent JC, Araujo DM, Chen K, Zhang W. Genetic amplification of the vascular endothelial growth factor (VEGF) pathway genes, including VEGFA, in human osteosarcoma. Cancer. 2011;117:4925–38.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yang J, Zhao L, Tian W, Liao Z, Zheng H, Wang G, Chen K. Correlation of WWOX, RUNX2 and VEGFA protein expression in human osteosarcoma. BMC Med Genomics. 2013;6:56.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yang Z, Chen Y, Fu Y, Yang Y, Zhang Y, Chen Y, Li D. Meta-analysis of differentially expressed genes in osteosarcoma based on gene expression data. BMC Med Genet. 2014;15:80.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yao P, Wang Z, Ding Y, Ma J, Hong T, Pan S, Zhang J. Regulatory network of differentially expressed genes in metastatic osteosarcoma. Mol Med Rep. 2015;11:2104–10.PubMedGoogle Scholar
  83. Yen C, Chen W, Chen T, Chen WY, Chen PC, Chiou H, Hung G, Wu HH, Wei C, Shiau C, Wu Y, Chao T, Tzeng C, Chen P, Lin C, Chen Y, Fletcher JA. Identification of chromosomal aberrations associated with disease progression and a novel 3q13.31 deletion involving LSAMP gene in osteosarcoma. Int J Oncol. 2009;35:775–88.PubMedGoogle Scholar
  84. Yuan J, Chen L, Chen X, Sun W, Zhou X. Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma. J Int Med Res. 2012;40:2090–7.CrossRefPubMedGoogle Scholar
  85. Zhang Z, Zhang L, Hua Y, Jia X, Li J, Hu S, Peng X, Yang P, Sun M, Ma F, Cai Z. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines. BMC Cancer. 2010;10:206.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zhang C, Yao C, Li H, Wang G, He X. Combined elevation of microRNA-196a and microRNA-196b in sera predicts unfavorable prognosis in patients with osteosarcomas. Int J Mol Sci. 2014a;15:6544–55.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhang C, Yao C, Li H, Wang G, He X. Serum levels of microRNA-133b and microRNA-206 expression predict prognosis in patients with osteosarcoma. Int J Clin Exp Pathol. 2014b;7:4194–203.PubMedPubMedCentralGoogle Scholar
  88. Zhang J, Yan Y, Wang C, Zhang S, Yu X, Wang W. MicroRNAs in osteosarcoma. Clin Chim Acta. 2015;444:9–17.CrossRefPubMedGoogle Scholar
  89. Zhao S, Kurenbekova L, Gao Y, Roos A, Creighton CJ, Rao P, Hicks J, Man TK, Lau C, Brown AMC, Jones SN, Lazar AJ, Ingram D, Lev D, Donehower LA, Yustein JT. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma. Oncogene. 2015;34(39):5069–79.Google Scholar
  90. Zou C, Shen J, Tang Q, Yang Z, Yin J, Li Z, Xie X, Huang G, Lev D, Wang J. Cancer-testis antigens expressed in osteosarcoma identified by gene microarray correlate with a poor patient prognosis. Cancer. 2012;118:1845–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Giulia Bernardini
    • 1
  • Maurizio Orlandini
    • 1
  • Federico Galvagni
    • 1
  • Annalisa Santucci
    • 1
  1. 1.Dipartimento di Biotecnologie, Chimica e FarmaciaUniversità di SienaSienaItaly

Personalised recommendations