Advertisement

Traditional Medicine and Use of Bone Biomarkers

  • Bachir Benarba
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA)

Abstract

Traditional medicine gathers the knowledge, skills, and practices accumulated through years and transmitted generation to generation, aiming to maintain health and to treat illnesses. Although this folk medicine includes different techniques and practices, herbal medicine remains the most used by local populations in different parts of the world. In recent years, bone diseases and disorders become a major health problem. Although conventional drugs are effective, more and more studies are interested in herbal therapies. An increasing number of studies have shown promising antiosteoporotic activities of medicinal plants. Bone markers, considered as inexpensive and noninvasive tools, are used to manage the response to the herbal treatments both in vitro and in vivo. Bone turnover markers include formation markers (osteocalcin, alkaline phosphatase, osteoprotegerin, etc.) and resorption markers (CTX, NTX, Pyridinoline, Deoxypyridinoline, etc.). Clinical studies using bone markers demonstrated a preventive effect of different medicinal plants such as Aristolochia longa L., Prunus domestica L., or Citrus unshiu Marcow. regarding bone loss in menopausal women. This chapter focuses on herbal medicine and use of bone biomarkers.

Keywords

Traditional medicine Medicinal plants Bone Osteoporosis Markers 

List of Abbreviations

ALP

Alkaline phosphatase

BALP

Bone-specific alkaline phosphatase

Ca

Calcium

CTX

Carboxy-terminal cross-linked telopeptides of type 1 collagen

DPD

Deoxypyridinoline

ICTP

Carboxy-terminal cross-linked telopeptide of type 1 collagen

NTX

Amino-terminal cross-linked telopeptide of type 1 collagen

OC

Osteocalcin

P

Phosphorus

PICP

Procollagen type 1 carboxy-terminal propeptide

PINP

Procollagen type 1 amino-terminal propeptide

PYD

Pyridinoline

RANK

Receptor activator of nuclear factor kappa B

RANKL

Receptor activator of nuclear factor kappa B ligand

TRAP

Tartrate-resistant acid phosphatase

References

  1. Arjmandi BH, Khalil DA, Lucas EA, Georgis A, Stoecker BJ, Hardin C, Payton ME, Wild RA. J Womens Health Gend Based Med. 2004;11(1):61–8.CrossRefGoogle Scholar
  2. Aswar U, Gurav M, More G, Rashed K, Aswar M. Effect of aqueous extract of Solanum xanthocarpum Schrad. & Wendl. on postmenopausal syndrome in ovariectomized rats. J Integr Med. 2014;12(5):439–46.CrossRefPubMedGoogle Scholar
  3. Baek JM, Ki J-Y, Jung Y, Moon S-H, Choi MK, Kim SH, Lee MS, Kim I, Oh J. Mollugin from Rubea cordifolia suppresses receptor activator of nuclear factor-kB ligand-induced osteoclastogenesis and bone resorbing activity in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Phytomedicine. 2015;22:27–35.CrossRefPubMedGoogle Scholar
  4. Benarba B, Ambroise G, Aoues A, Meddah B, Vazquez A. Aristolochia longa aqueous extract triggers the mitochondrial pathway of apoptosis in BL41 Burkitt’s lymphoma cells. Int J Green Pharm. 2012;6:45–9.CrossRefGoogle Scholar
  5. Benarba B, Meddah B, Tir-Touil A. Response of bone resorption markers to Aristolochia longa intaked by Algerian breast cancer postmenopausal women. Adv Pharmacol Sci. 2014;2014:1–4.CrossRefGoogle Scholar
  6. Brzóska MM, Rogalska J, Galazyn-Sidorczuk M, Jurczuk M, Roszczenko A, Tomczyk M. Protective effect of Aronia melanocarpa polyphenols against cadmium-induced disorders in bone metabolism: a study in a rat model of lifetime human exposure to this heavy metal. Chem Biol Interact. 2015;229:132–46.CrossRefPubMedGoogle Scholar
  7. Bu SY, Lucas EA, Franklin M, Marlow D, Brackett DJ, Boldrin EA, et al. Restoration of bone mass and microarchitecture by dietary dried plum is comparable to PTH in osteopenic orchidectomized rats. Osteoporos Int. 2007;18:931–42.CrossRefPubMedGoogle Scholar
  8. Chen H, Wu M, Kubo K. Combined treatment with a traditional Chinese medicine, Hachimi-jio-gan (Ba-Wei-Di-Huang-Wan) and alendronate improves bone microstructure in ovariectomized rats. J Ethnopharmacol. 2012;142:80–5.CrossRefPubMedGoogle Scholar
  9. Chiba H, Uehara M, Wu J, Wang X, Masuyama R, Suzuki K, Kanazawa K, Ishimi Y. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr. 2003;133(6):1892–7.PubMedGoogle Scholar
  10. Chitme HR, Muchandi IS, Burli SC. Effect of Asparagus racemosus Willd root extract on ovariectomized rats. Open Nat Prod J. 2009;2:16–23.CrossRefGoogle Scholar
  11. Chua LS, Abdul Latiff N, Lee SY, Lee CT, Sarmidi MR, Abdul AR. Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem. 2011;127:1186–92.CrossRefPubMedGoogle Scholar
  12. Chua LS, Lee SY, Abdullah N, Sarmidi MR. Review on Labisia pumila (Kacip Fatimah): bioactive phytochemicals and skin collagen synthesis promoting herb. Fitoterapia. 2012;83:1322–35.CrossRefPubMedGoogle Scholar
  13. Di Pompo G, Poli F, Mandrone M, Lorenzi B, Roncuzzi L, Baldini N, Granchi D. Comparative “in vitro” evaluation of the antiresorptive activity residing in four Ayurvedic medicinal plants. Hemidesmus indicus emerges for its potential in the treatment of bone loss diseases. J Ethnopharmacol. 2014;154:462–70.CrossRefPubMedGoogle Scholar
  14. Elkomy MM, Elsaid FG. Anti-osteoporotic effect of medical herbs and calcium supplementation on ovariectomized rats. Journal Basic Appl Zool. 2015;72:81–8.CrossRefGoogle Scholar
  15. Franklin M, Bu SY, Lerner MR, Lancaster EA, Bellmer D, Marlow D, Lightfoot SA, Arjmandi BH, Brackett DI, Lucas EA, Smith BJ. Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway. Bone. 2006;39:1331–42.CrossRefPubMedGoogle Scholar
  16. Habauzit V, Offord E, Chee W, Jafrelo L, Ameye L, Williamson G, Horcajada MN. Effect of two years dietary hesperidin supplementation on bone metabolism in postmenopausal women. In: Proceedings of the Annual Meeting of the American Society for Bone and Mineral Research, 1629 Sept, San Diego; 2011.Google Scholar
  17. Holick MF, Lamb JJ, Lerman RH, Konda VR, Darland G, Minich DM, Desai A, Chen TC, Austin M, Kornberg J, Chang JL, Hsi A, Bland JS, Tripp ML. Hop rho iso-alpha acids, berberine, vitamin D3 and vitamin K1 favorably impact biomarkers of bone turnover in postmenopausal women in a 14-week trial. J Bone Miner Metab. 2010;28(3):342–50.CrossRefPubMedGoogle Scholar
  18. Hooshmand S, Chai SC, Saadat RL, Payton ME, Brummel-Smith K, Arjmandi BH. Comparative effects of dried plum and dried apple on bone in postmenopausal women. Br J Nutr. 2011;106:923–30.CrossRefPubMedGoogle Scholar
  19. Horcajada MN, Habauzit V, Trzeciakiewicz A, Morand C, Gil-Izquierdo A, Mardon J, Lebecque P, Davicco MJ, Chee WS, Coxam V, Offord E. Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats. J Appl Physiol. 2008;104:648–54.CrossRefPubMedGoogle Scholar
  20. Huh J-E, Kim S-J, Kang J-W, Nam D-W, Choi D-Y, Park D-S, Lee J-D. The Standardized BHH10 Extract, a combination of Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, reverses bone mass and metabolism in a rat model of postmenopausal osteoporosis. Phytother Res. 2015;29:30–9.CrossRefPubMedGoogle Scholar
  21. Jun AY, Kim HJ, Park K-K, Son KH, Lee DH, Woo MH, Kim Y-S, Lee S-K, Chung W-Y. Extract of Magnoliae Flos inhibits ovariectomy-induced osteoporosis by blocking osteoclastogenesis and reducing osteoclast-mediated bone resorption. Fitoterapia. 2012;83(8):1523–31.Google Scholar
  22. Ko Y-J, Wu J-B, Ho H-Y, Lin W-C. Antiosteoporotic activity of Davallia formosana. J Ethnopharmacol. 2012;139:558–65.CrossRefPubMedGoogle Scholar
  23. Koo HJ, Sohn E-H, Kim Y-J, Jang S-A, Namkoong S, Kang SC. Effect of the combinatory mixture of Rubus coreanus Miquel and Astragalus membranaceus Bunge extracts on ovariectomy-induced osteoporosis in mice and anti-RANK signaling effect. J Ethnopharmacol. 2014;151:951–9.CrossRefGoogle Scholar
  24. Lai N, Zhang Z, Wang B, Miao X, Guo Y, Yao C, Wang Z, Wang L, Ma R, Li X, Jiang G. Regulatory effect of traditional Chinese medicinal formula Zuo-Gui-Wan on the Th17/Treg paradigm in mice with bone loss induced by estrogen deficiency. J Ethnopharmacol. 2015;166:228–39.CrossRefPubMedGoogle Scholar
  25. Lee J-H, Lee H-J, Yang M, Moon C, Kim J-C, Bae C-S, Jo S-K, Jang J-S, Kim SH. Effect of Korean Red Ginseng on radiation-induced bone loss in C3H/HeN mice. J Ginseng Res. 2013;37(4):435–41.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lee Y-E, Liu H-C, Lin Y-L, Liu S-H, Yang R-S, Chen R-M. Drynaria fortunei J. Sm. improves the bone mass of ovariectomized rats through osteocalcin-involved endochondral ossification. J Ethnopharmacol. 2014;158:94–101.CrossRefPubMedGoogle Scholar
  27. Lee H-Y, Park S-H, Chae S-W, Soung N-K, Oh M-J, Kim JS, Kim YO, Chae H-J. Aqueous ginseng extract has a preventive role in RANKL-induced osteoclast differentiation and estrogen deficiency-induced osteoporosis. J Funct Foods. 2015;13:192–203.CrossRefGoogle Scholar
  28. Li X-H, Xiong Z-L, Lu S, Zhang Y, Li F-M. Pharmacokinetics of naringin and its metabolite naringenin in rats after oral administration of Rhizoma Drynariae extract assayed by UPLC-MS/MS. Chin J Nat Med. 2010;8(1):0040–6.CrossRefGoogle Scholar
  29. Lim DW, Kim YT. Anti-osteoporotic effects of Angelica sinensis (Oliv.) diels extract on ovariectomized rats and its oral toxicity in rats. Nutrients. 2014;6:4362–72.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lim DW, Lee Y, Kim YT. Preventive effects of Citrus unshiu peel extracts on bone and lipid metabolism in OVX rats. Molecules. 2014;19:783–94.CrossRefPubMedGoogle Scholar
  31. Lin TH, Yang R-S, Wang K-C, Lu D-H, Liou H-C, Ma Y, Chang S-H, Fu W-M. Ethanol extracts of fresh Davallia formosana (WL1101) inhibit osteoclast differentiation by suppressing RANKL-induced nuclear factor-kB activation. Evid Based Complement Alternat Med. 2013;2013:1–13.Google Scholar
  32. Nian H, Qin L-P, Zhang Q-Y, Zheng H-C, Yu Y, Huang B-K. Antiosteoporotic activity of Er-Xian decoction, a traditional Chinese herbal formula, in ovariectomized rats. J Ethnopharmacol. 2006;108:96–102.CrossRefPubMedGoogle Scholar
  33. Ozaki K, Okamoto M, Fukasawa K, Iezaki T, Onishi Y, Yoneda Y, Sugiura M, Hinoi E. Daily intake of b-cryptoxanthin prevents bone loss by preferential disturbance of osteoclastic activation in ovariectomized mice. J Pharmacol Sci. 2015;129:72–7.Google Scholar
  34. Rendina E, Lim YF, Marlown D, Wang Y, Clarke SL, Kuvibidila S, Lucas EA, Smith BJ. Dietary supplementation with dried plum prevents ovariectomy-induced bone loss while modulating the immune response in C57BL/6J mice. J Nutr Biochem. 2012;23:60–8.CrossRefPubMedGoogle Scholar
  35. Sassa S, Kikuchi T, Shinoda H, Suzuki S, Kudo H, Sakamoto S. Preventive effect of ferulic acid on bone loss in ovariectomized rats. In Vivo. 2003;17(3):277–80.PubMedGoogle Scholar
  36. Shivakumar K, Mukund H, Rabin P. Evaluation of antiosteoporotic activity of root extract of Rubia cordifolia in ovariectomized rats. Int J Drug Dev Res. 2012;4(3):163–72.Google Scholar
  37. Shuid AN, Ping LL, Muhammad N, Mohamed N, Soelaiman IN. The effects of Labisia pumila var. alata on bone markers and bone calcium in a rat model of post-menopausal osteoporosis. J Ethnopharmacol. 2011;133:538–42.CrossRefPubMedGoogle Scholar
  38. Siddiqi MH, Siddiqi MZ, Ahn S, Kang S, Kim Y-J, Sathishkumar N, Yang DU, Yang D-C. Ginseng saponins and the treatment of osteoporosis: mini literature review. J Ginseng Res. 2013;37(3):261–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sirasanagandla SR, Pai KSR, Bhat KM. Preventive role of Emblica offcinalis and Cissus quadrangularis on bone loss in osteoporosis. I J Pharm Pharm Sci. 2013;5(4):465–70.Google Scholar
  40. Smith BJ, Bu SY, Wang Y, Rendina E, Lim YF, Marlow D, Clarke SL, Cullen DM, Lucas EA. A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat. Bone. 2014;58:151–9.CrossRefPubMedGoogle Scholar
  41. Sunwoo HH, Kim CT, Kim DY, Maeng JS, Cho CW, Lee SJ. Extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Meyer) using commercial enzymes and high hydrostatic pressure. Biotechnol Lett. 2013;35:1017–22.CrossRefPubMedGoogle Scholar
  42. Szopa A, Ekiert H, Muszynska B. Accumulation of hydroxybenzoic acids and other biologically active phenolic acids in shoot and callus cultures of Aronia melanocarpa (Michx.) Elliott (black chokeberry). Plant Cell Tiss Org Cult. 2013;113:323–9.CrossRefGoogle Scholar
  43. Tamilselvi S, Balasubramani SP, Venkatasubramanian P, Vasanthi NS. A review on the pharmacognosy and pharmacology of the herbals traded as “Daruharidra”. Int J Pharm Bio Sci. 2014;5:556–70.Google Scholar
  44. Uchiyama S, Yamaguchi M. Oral administration of beta-cryptoxanthin prevents bone loss in ovariectomized rats. Int J Mol Med. 2006;17(1):15–20.PubMedGoogle Scholar
  45. Wang X, Zhen L, Zhang G, Wong M-S, Qin L, Yao X. Osteogenic effects of flavonoid aglycones from an osteoprotective fraction of Drynaria fortunei – an in vitro efficacy study. Phytomedicine. 2011;18:868–72.CrossRefPubMedGoogle Scholar
  46. Wang J, Zhang R, Dong C, Jiao L, Xu L, Liu J, Wang Z, Ying QLM, Fong H, Lao L. Topical treatment with Tong-Luo-San-Jie gel alleviates bone cancer pain in rats. J Ethnopharmacol. 2012;143:905–13.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xu G, Sun N, Zhao M, Ju C, Jia T. Study on decoction’s effect of different processed rhizomes of Cibotium barometz on retinoic acid induced male rats osteoporosis. China J Chin Mater Med. 2014a;39(6):1011–5.Google Scholar
  48. Xu G, Zhao M-J, Sun N, Ju C-G, Jia T-Z. Effect of the RW-Cb and its active ingredient like P-acid and P-aldehyde on primary rat osteoblasts. J Ethnopharmacol. 2014b;151:237–41.CrossRefPubMedGoogle Scholar
  49. Yamaguchi M, Igarashi A, Uchiyama S, Sugawara K, Sumida T, Morita S, Ogawa H, Nishitani M, Kajimoto Y. Effect of beta-Crytoxanthin on circulating bone metabolic markers: intake of juice (Citrus unshiu) supplemented with beta-Cryptoxanthin has an effect in menopausal women. J Health Sci. 2006;52(6):758–68.CrossRefGoogle Scholar
  50. Yang Q, Populo SM, Zhang J, Yang G, Kodama H. Effect of Angelica sinensis on the proliferation of human bone cells. Clin Chim Acta. 2002;324(1–2):89–97.CrossRefPubMedGoogle Scholar
  51. Yogesha HS, Chandrashekhar VM, Katti HR, Ganapaty S, Raghavendra HL, Gowda GK, Goplakhrishna B. Anti-osteoporotic activity of aqueous-methanol extract of Berberis aristata in ovariectomized rats. J Ethnopharmacol. 2011;134:334–8.CrossRefGoogle Scholar
  52. Zhang WL, Zheng K, Zhu KY, Zhan J, Bi C, Chen JP, Dong T, Choi R, Lau D, Tsim K. Chemical and biological assessment of angelica roots from different cultivated regions in a Chinese herbal decoction Danggui Buxue Tang. Evid Based Complement Alternat Med. 2013;2013:1–10.Google Scholar
  53. Zhao X, Wu Z-X, Zhang Y, Yan Y-B, He Q, Cao P-C, Lei W. Anti-osteoporosis activity of Cibotium barometz extract on ovariectomy-induced bone loss in rats. J Ethnopharmacol. 2011;137:1083–8.CrossRefPubMedGoogle Scholar
  54. Zhao S, Niu F, Xu CY, Liu Y, Ye L, Bi GB, Chen L, Tian G, Nie TH. Diosgenin prevents bone loss 716 on retinoic acid-induced osteoporosis in rats. Ir J Med Sci. 2016;185(3):581–7.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and LifeUniversity of MascaraMascaraAlgeria

Personalised recommendations