Nuclear BMI-1 as a Biomarker in Laryngeal Cancer

  • Eugenia Allegra
  • Serena Trapasso
Reference work entry
Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series


The main cause of treatment failure and death in laryngeal squamous cell carcinoma is metastasis to the regional lymph nodes. The current clinical staging criteria fail to differentiate patients with occult metastasis from patients without metastasis. Identifying molecular markers of the disease might improve our understanding of the molecular mechanisms underlying the pathogenesis and development of laryngeal carcinoma and may help improve clinical staging and treatment.

Emerging studies show BMI1 has an important function as a biomarker of cancer stem cells (CSCs), which are cells with self-renewal characteristics and capable of initiation, progression, invasion, metastasis, tumor recurrence, and resistance to chemotherapy and radiotherapy. There are increasing studies that consider the role of CSCs in head and neck cancers and the potential result of this knowledge on clinical-surgical outcome. A promising intracellular marker of CSCs in head and neck cancer is the oncoprotein BMI1, with specific data about its prognostic value based on the specific location. More precisely, the nuclear expression of BMI1 in patients with laryngeal carcinoma seems to correlate with lymph node metastasis.


Cancer Stem Cell Laryngeal Squamous Cell Carcinoma Laryngeal Carcinoma BMI1 Expression Laryngeal Squamous Cell Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


B-Cell-Specific moloney Murine Leukemia Virus Integration site 1


Beta-Transducin Repeat Containing


Cytoplasmatic B-Cell-Specific Moloney Murine Leukemia Virus Integration Site 1


Cancer Stem Cells


Epithelial-Mesenchymal Transition




Laryngeal Squamous Cell Carcinoma


Nuclear B-Cell-Specific Moloney Murine Leukemia Virus Integration Site 1


Polycomb Group


Polycomb-Repressive Complex 1


Polycomb-Repressive Complex 2


Posterior Sex Control


Ring Finger


Telomerase Reverse Transcriptase


  1. Allegra E, Trapasso S. Cancer stem cells in head and neck cancer. Onco Targets Ther. 2012;5:375–83.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allegra E, Garozzo A, Lombardo N, et al. Mutations and polymorphisms in mitochondrial DNA in head and neck cancer cell lines. Acta Otorhinolaryngol Ital. 2006;26:185–90.PubMedPubMedCentralGoogle Scholar
  3. Allegra E, Trapasso S, Sacco A, et al. ELISA detection of salivary levels of Cd44sol as a diagnostic test for laryngeal carcinomas. J Cancer Sci Ther. 2012a;4:330–4.CrossRefGoogle Scholar
  4. Allegra E, Puzzo L, Zuccalà V, et al. Nuclear BMI1 expression in laryngeal carcinoma correlates with lymph node pathological status. World J Surg Oncol. 2012b;10:206.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Allegra E, Caltabiano R, Amorosi A, et al. Expression of BMI1 and p16 in laryngeal squamous cell carcinoma. Head Neck. 2013;35(6):847–51.CrossRefPubMedGoogle Scholar
  6. Allegra E, Trapasso S, Pisani D, et al. The role of BMI1 as a biomarker of cancer stem cells in head and neck cancer: a review. Oncology. 2014;86:199–205.CrossRefPubMedGoogle Scholar
  7. Almadori G, Bussu F, Cadoni G, et al. Molecular markers in laryngeal squamous carcinoma: towards an integrated clinicobiological approach. Rev Eur J Cancer. 2005;41(5):683–93.CrossRefGoogle Scholar
  8. Chen H, Zhou L, Dou T, et al. BMI1’s maintenance of the proliferative capacity of laryngeal cancer stem cells. Head Neck. 2011a;33(8):1115–25.CrossRefPubMedGoogle Scholar
  9. Chen H, Zhou L, Wan G, et al. BMI1 promotes the progression of laryngeal squamous cell carcinoma. Oral Oncol. 2011b;47(6):472–81.CrossRefPubMedGoogle Scholar
  10. Chiu RJ, Myer EN, Johnson JT. Efficacy of routine neck dissection in the management of supraglottic cancer. Otolaryngol Head Neck Surg. 2004;131:485–8.CrossRefPubMedGoogle Scholar
  11. Fasano CA, Phoenix TN, Kokovay E, et al. BMI1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev. 2009;23(5):561–74.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gil J, Bernard D, Peters G. Role of polycomb group proteins in stem cell self-renewal and cancer. DNA Cell Biol. 2005;24:117–25.CrossRefPubMedGoogle Scholar
  13. Haupt Y, Alexander WS, Barri G, et al. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Emu-myc transgenic mice. Cell. 1991;65(5):753–63.CrossRefPubMedGoogle Scholar
  14. Häyry V, Mäkinen LK, Atula T, et al. BMI1 expression predicts prognosis in squamous cell carcinoma of the tongue. Br J Cancer. 2010;102(5):892–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Heffner M, Fearon DT. Loss of T cell receptor-induced BMI1 in the KLRG1(+) senescent CD8(+) T lymphocyte. Proc Natl Acad Sci U S A. 2007;104(33):13414–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Itahana K, Zou Y, Itahana Y, et al. Control of the replicative life span of human fibroblasts by p16 and the polycomb protein BMI1. Mol Cell Biol. 2003;23(1):389–401.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and polycomb-group gene BMI1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999a;397(6715):164–8.CrossRefPubMedGoogle Scholar
  18. Jacobs JJ, Scheijen B, Voncken JW, et al. BMI1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 1999b;13(20):2678–90.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kang MK, Kim RH, Kim SJ, et al. Elevated BMI1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br J Cancer. 2007;96(1):126–33.CrossRefPubMedGoogle Scholar
  20. Kirchner JA, Carter D. Pathology of the larynx. In: Mills SE, editor. Sternberg’s diagnostic surgical pathology, vol. 2. 4th ed. Noida: Gopson Papers; 2004. p. 1007–32.Google Scholar
  21. Koehn J, Krapfenbauer K, Huber S, et al. Potential involvement of MYC- and p53-related pathways in tumorigenesis in human oral squamous cell carcinoma revealed by proteomic analysis. J Proteome Res. 2008;7(9):3818–29.CrossRefPubMedGoogle Scholar
  22. Lessar J, Sauvageau G. BMI1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.CrossRefGoogle Scholar
  23. Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and BMI1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lu H, Sun HZ, Li H, et al. The clinicopathological significance of BMI1 expression in pathogenesis and progression of gastric carcinomas. Asian Pac J Cancer Prev. 2012;13(7):3437–41.CrossRefPubMedGoogle Scholar
  25. Meng S, Luo M, Sun H, et al. Identification and characterization of BMI1-responding element within the human p16 promoter. J Biol Chem. 2010;285(43):33219–29.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pardal R, Molofsky AV, He S, et al. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb Symp Quant Biol. 2005;70:177–85.CrossRefPubMedGoogle Scholar
  27. Qin ZK, Yang JA, Ye YL, Zhang X, Xu LH, Zhou FJ, Han H, Liu ZW, Song LB, Zeng MS. Expression of BMI1 is a prognostic marker in bladder cancer. BMC Cancer. 2009;9:61.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Saeki M, Kobayashi D, Tsuji N, et al. Diagnostic importance of overexpression of BMI1 mRNA in early breast cancers. Int J Oncol. 2009;35:511–5.PubMedGoogle Scholar
  29. Sahasrabuddhe AA, Dimri M, Bommi PV, et al. βTrCP regulates BMI1 protein turnover via ubiquitination and degradation. Cell Cycle. 2011;10(8):1322–30.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Satijn DP, Otte AP. RING1 interacts with multiple polycomb-group proteins and displays tumorigenic activity. Mol Cell Biol. 1999;19(1):57–68.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Song L, Zeng MS, Liao WT, et al. BMI1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res. 2006;66:6225–32.CrossRefPubMedGoogle Scholar
  32. Sten WB, Silver CE, Zeifer BA, et al. Computed tomography of the clinically negative neck. Head Neck. 1991;13:73–5.CrossRefGoogle Scholar
  33. Trapasso S, Allegra E. Role of CD44 as a marker of cancer stem cells in head and neck cancer. Biologics. 2012;6:379–83.PubMedPubMedCentralGoogle Scholar
  34. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer: the polycomb connection. Cell. 2004;118:409–18.CrossRefPubMedGoogle Scholar
  35. Vrzalikova K, Skarda J, Ehrmann J, et al. Prognostic value of BMI1 oncoprotein expression in NSCLC patients: a tissue microarray study. J Cancer Res Clin Oncol. 2008;134:1037–42.CrossRefPubMedGoogle Scholar
  36. Wu KJ, Yang MH. Epithelial-mesenchymal transition and cancer stemness: the Twist1-BMI1 connection. Biosci Rep. 2011;31(6):449–55.CrossRefPubMedGoogle Scholar
  37. Yang MH, Hsu DS, Wang HW, et al. BMI1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol. 2010a;12(10):982–92.CrossRefPubMedGoogle Scholar
  38. Yang G, He WP, Cai MY, et al. Intensive expression of BMI1 is a new independent predictor of poor outcome in patients with ovarian carcinoma. BMC Cancer. 2010b;10:33.CrossRefGoogle Scholar
  39. Yucel T, Saatci I, Sennaroglu L, et al. MR imaging in squamous carcinoma of the head and neck with no palpable lymph nodes. Acta Radiol. 1997;38:810–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Otolaryngology-Head and Neck Surgery, Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly

Personalised recommendations