Lateral Spin Transport (Diffusive Spin Current)

Living reference work entry


The transport properties of the diffusive pure spin current induced in the metallic nanostructures are discussed. The author introduces the methods for the efficient generation, manipulation, and detection of the pure spin current in laterally configured ferromagnetic/nonmagnetic metal hybrid structures. The experimental demonstration of the magnetization switching using the pure spin current is also introduced.


Spin Relaxation Pure Spin Spin Current Ferromagnetic Metal Spin Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Prof. Otani for the valuable discussions and the financial supports from NEDO and CREST.


  1. 1.
    Wolf SA et al (2001) Spintronics: A Spin-Based Electronics Vision for the Future. Science 294:1488CrossRefADSGoogle Scholar
  2. 2.
    Zutic I, Fabian I, Das Sarma S (2004) Spintronics: Fundamentals and applications. Rev Mod Phys 76:323CrossRefADSGoogle Scholar
  3. 3.
    Chappert C, Fert A, Van Dau Nguyen F (2007) The emergence of spin electronics in data storage. Nat Mater 6:813–823CrossRefADSGoogle Scholar
  4. 4.
    Maekawa S, Valenzuela SOV, Saitoh E, Kimura T (eds) Spin current. Oxford University PressGoogle Scholar
  5. 5.
    Pratt WP Jr, Lee S-F, Slaughter JM, Loloee R, Schroeder PA, Bass J (1991) Perpendicular Giant Magne- toresistances of Ag/Co Multilayers. Phys Rev Lett 66:3060CrossRefADSGoogle Scholar
  6. 6.
    Brataas A, Kent AD, Ohno H (2012) Current-induced torques in magnetic materials. Nature Mater. Nat Mater 11:372–381CrossRefADSGoogle Scholar
  7. 7.
    Johnson M, Silsbee RH (1987) Thermodynamic analysis of interfacial transport and of the thermomagne- toelectric system. Phys Rev B 35:4959CrossRefADSGoogle Scholar
  8. 8.
    Jedema FJ, Filip AT, van Wees BJ (2001) Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature (London) 410:345CrossRefADSGoogle Scholar
  9. 9.
    Valenzuela SO (2009) Nonlocal Electronic Spin Detection, Spin Accumulation and the Spin Hall effect. Int J Mod Phys B 23:2413CrossRefADSGoogle Scholar
  10. 10.
    Kimura T, Otani Y (2007) Spin transport in lateral ferromagnetic/nonmagnetic hybrid structures. J Phys J Phys Cond Mat 19:165216; Otani Y, Kimura T (2011) Spin current related phenomena in metallic nano-structures. Physica E 43:735Google Scholar
  11. 11.
    Hoffmann A (2007) Pure Spin-Currents. Phys Stat Sol (c) 4:4236CrossRefGoogle Scholar
  12. 12.
    Bader SD, Parkin SSP (2010) Spintronics. Annu Rev Condens Matter Phys 1:71CrossRefADSGoogle Scholar
  13. 13.
    Urech M, Korenivski V, Poli N, Haviland DB (2006) Direct Demonstration of Decoupling of Spin and Charge Currents in Nanostructures. Nano Lett 6:871CrossRefADSGoogle Scholar
  14. 14.
    Takahashi S, Maekawa S (2003) Spin injection and detection in magnetic nanostructures. Phys Rev B 67:052409CrossRefADSGoogle Scholar
  15. 15.
    Kimura T, Hamrle J, Otani Y (2005) Estimation of spin-diffusion length from the magnitude of spin- current absorption: Multiterminal ferromagnetic/nonferromagnetic hybrid structures. Phys Rev B 72:014461CrossRefADSGoogle Scholar
  16. 16.
    Mihajlovic G et al (2010) Enhanced spin signals due to native oxide formation in Ni80Fe20/Ag lateral spin valves. Appl Phys Lett 97:112502CrossRefADSGoogle Scholar
  17. 17.
    Garzon S, Zutic I, Webb RA (2005) Temperature-Dependent Asymmetry of the Nonlocal Spin-Injection Resistance: Evidence for Spin Nonconserving Interface Scattering. Phys Rev Lett 94:176601CrossRefADSGoogle Scholar
  18. 18.
    van Staa A, Wulfhorst J, Vogel A, Merkt U, Meier G (2008) Spin precession in lateral all-metal spin valves: Experimental observation and theoretical description. Phys Rev B 77:214416CrossRefADSGoogle Scholar
  19. 19.
    Bass J, Pratt WP Jr (2007) Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J Phys Condens Matter 19:183201CrossRefADSGoogle Scholar
  20. 20.
    Kimura T, Otani YC, Levy Phys PM (2007) Electrical Control of the Direction of Spin Accumulation. Rev Lett 99:166601CrossRefADSGoogle Scholar
  21. 21.
    Nonoguchi S, Nomura T, Kimura T (2012) Electrical manipulation of spin polarization and generation of giant spin current using multi terminal spin injectors. J Appl Phys 111:07C505CrossRefGoogle Scholar
  22. 22.
    Kimura T, Otani Y, Hamrle J (2006) Switching Magnetization of a Nanoscale Ferromagnetic Particle Using Nonlocal Spin Injection. Phys Rev Lett 96:037201CrossRefADSGoogle Scholar
  23. 23.
    Yang T, Kimura T, Otani Y (2008) Giant spin-accumulation signal and pure spin-current-induced re- versible magnetization switching. Nat Phys 4:851 4CrossRefGoogle Scholar
  24. 24.
    Zou H, Ji Y (2011) Temperature evolution of spin-transfer switching in nonlocal spin valves with dipolar coupling. J Magn Magn Mater 323:2448; Zou H, Chen S, Ji Y (2012) Reversal and excitations of a nanoscale magnetic domain by sustained pure spin currents. Appl Phys Lett 100:012404Google Scholar
  25. 25.
    Sun JZ et al (2009) Publisher’s Note: A three-terminal spin-torque-driven magnetic switch. Appl Phys Lett 95:083506CrossRefADSGoogle Scholar
  26. 26.
    Sun JZ (2000) Spin-current interaction with a monodomain magnetic body: A model study. Phys Rev B 62:570–578CrossRefADSGoogle Scholar
  27. 27.
    Kimura T, Hamrle J, Otani Y, Tsukagoshi K, Aoyagi Appl Y (2004) Spin-dependent boundary resistance in the lateral spin valve structure. Phys Lett 85:3501Google Scholar
  28. 28.
    Zhang S, Levy PM, Fert A (2002) Mechanisms of Spin-Polarized Current-Driven Magnetization Switch- ing. Phys Rev Lett 88:236601CrossRefADSGoogle Scholar
  29. 29.
    Stiles MD, Zangwill A (2002) Anatomy of spin-transfer torque. Phys Rev B 66:014407CrossRefADSGoogle Scholar
  30. 30.
    Zhang J, Levy PM, Zhang S, Antropov V (2004) Identification of Transverse Spin Currents in Noncollinear Magnetic Structures. Phys Rev Lett 93:256602CrossRefADSGoogle Scholar
  31. 31.
    Taniguchi T, Yakata S, Imamura H, Ando Y (2008) Penetration depth of transverse spin current in ferromagnetic metals. IEEE Trans Magn 44:2636CrossRefADSGoogle Scholar
  32. 32.
    Taniguchi T, Yakata S, Imamura H, Ando Y (2008) Determination of Penetration Depth of Transverse Spin Current in Ferromagnetic Metals by Spin Pumping. Appl Phys Exp 1:031301-1-3ADSGoogle Scholar
  33. 33.
    Nonoguchi S, Nomura T, Kimura T (2010) Longitudinal and transverse spin current absorptions in a lateral spin-valve structure. Phys Rev B 86:104417Google Scholar
  34. 34.
    Taniyama T, Nakatani I, Namikawa T, Yamazaki Y (1999) Resistivity due to Domain Walls in Co Zigzag Wires. Phys Rev Lett 82:2780CrossRefADSGoogle Scholar
  35. 35.
    van Son CP, van Kempen H, Wyder P (1987) Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Phys Rev Lett 58:2271–2273CrossRefADSGoogle Scholar
  36. 36.
    Schmidt G, Ferrand D, Molenkamp WL, Filip TA, van Wees JB (2000) Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B 62:R4790–R4793CrossRefADSGoogle Scholar
  37. 37.
    Balke B, Wurmehl S, Fecher HG, Felser C, Kubler J (2008) Rational design of new materials for spintronics: Co2FeZ (Z = Al, Ga, Si, Ge). Sci Technol Adv Mater 9:014102CrossRefGoogle Scholar
  38. 38.
    Kimura T, Hashimoto N, Yamada S, Miyao M, Hamaya K, Room-temperature generation of giant pure spin currents using Co2FeSi spin injectors. arXiv:1108.0156; Hamaya K, Hashimoto N, Yamada S, Miyao M, Kimura T To be published in Phys Rev BGoogle Scholar
  39. 39.
    Bridoux G, Costache MV, Van de Vondel J, Neumann I, Valenzuela SO (2011) Enhanced spin signal in nonlocal devices based on a ferromagnetic CoFeAl alloy. Appl Phys Lett 99:102107CrossRefADSGoogle Scholar
  40. 40.
    Takahashi YK, Kasai S, Hirayama S, Mitani S, Hono K (2012) All-metallic lateral spin valves using Co2Fe(Ge0.5Ga0.5) Heusler alloy with a large spin signal. Appl Phys Lett 100:052405CrossRefADSGoogle Scholar
  41. 41.
    Rashba EI (2000) Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys Rev B 62, R16267CrossRefADSGoogle Scholar
  42. 42.
    Kimura T, Otani Y, Hamrle Phys J (2006) Enhancement of spin accumulation in a nonmagnetic layer by reducing junction size. Rev B 73:132405CrossRefGoogle Scholar
  43. 43.
    Tsoi M, Jansen AGM, Bass J, Chiang W-C, Seck M, Tsoi V, Wyder Phys P (1998) Excitation of a Magnetic Multilayer by an Electric Current. Rev Lett 80:4281CrossRefADSGoogle Scholar
  44. 44.
    Albert FJ, Emley NC, Myers EB, Ralph DC, Buhrman Phys RA (2002) Quantitative Study of Magnetization Reversal by Spin-Polarized Current in Magnetic Multilayer Nanopillars. Rev Lett 89:226802CrossRefADSGoogle Scholar
  45. 45.
    Saitoh E, Ueda M, Miyajima H, Tatara G (2006) Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl Phys Lett 88:182509CrossRefADSGoogle Scholar
  46. 46.
    Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature (London) 442:176CrossRefADSGoogle Scholar
  47. 47.
    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S (2007) Room-Temperature Reversible Spin Hall Effect. Phys Rev Lett 98:156601CrossRefADSGoogle Scholar
  48. 48.
    Slachter A, Bakker FL, Adam JP, van Wees BJ (2010) Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat Phys 6:879CrossRefGoogle Scholar
  49. 49.
    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E (2010) Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature (London) 464:262CrossRefADSGoogle Scholar
  50. 50.
    Liu L, Pai C-F, Li Y, Tseng H-W, Ralph DC, Buhrman RA (2012) Spin torque switching with the giant spin Hall effect of tantalum. Science 336:555CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Physics, Inamori Frontier Research CenterKyushu UniversityFukuokaJapan

Personalised recommendations