Magnon Spintronics

  • Alexy D. Karenowska
  • A. V. Chumak
  • A. A. Serga
  • Burkard Hillebrands
Living reference work entry


Presented here is an introduction to magnon spintronics, the emerging field of research concerned with structures and devices which involve the interconversion between electronic spin currents (spin currents carried by electrons) and magnon currents (spin angular momentum fluxes which do not involve the motion of charged carriers). Aimed at the nonexpert reader, the text reviews fundamental and applied aspects of magnonics and examines how the study of the interplay between magnonic and electronic spin transport both shines a light on new physics, and opens doors to new technologies.


Spin Wave Spin Current Yttrium Iron Garnet Magnonic Crystal Brillouin Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stancil DD (1993) Theory of magnetostatic waves. Springer, New YorkGoogle Scholar
  2. 2.
    Gurevich AG, Melkov GA (1996) Magnetization oscillations and waves. Press, CRCGoogle Scholar
  3. 3.
    Landau LD, Lifshitz E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjet 8:153Google Scholar
  4. 4.
    Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443Google Scholar
  5. 5.
    Heinrich B, Bland JAC (1994) Ultrathin magnetic structures II. Springer, BerlinGoogle Scholar
  6. 6.
    Plant JS (1977) Spin wave dispersion curves for yttrium iron garnet. J Phys Chem 10:4805Google Scholar
  7. 7.
    Geller S, Gilleo MA (1957) Structure and ferrimagnetism of yttrium and rare-earth-iron garnets. Acta Crystallogr 10:239Google Scholar
  8. 8.
    Glass HL (1988) Ferrite films for microwave and millimeter-wave devices. Proc IEEE 76:151Google Scholar
  9. 9.
    Serga AA, Chumak AV, Hillebrands B (2010) YIG magnonics. J Phys D Appl Phys 43:264002Google Scholar
  10. 10.
    Cherepanov V, Kolokolov I, L’vov V (1993) The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys Rep 229:81Google Scholar
  11. 11.
    Yin LF, Wei DH, Lei N, Zhou LH, Tian CS, Dong GS, Jin XF, Guo LP, Jia QJ, Wu RQ (2006) Magnetocrystalline anisotropy in Permalloy revisited. Phys Rev Lett 97:067203Google Scholar
  12. 12.
    Kalinikos BA, Slavin AN (1986) Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J Phys C Solid State Phys 19:7013Google Scholar
  13. 13.
    Kalinikos BA, Kozhus NV, Kostylev MP, Slavin AN (1990) The dipole exchange spin wave spectrum for anisotropic ferromagnetic films with mixed exchange boundary conditions. J Phys Condens Matter 2:9861Google Scholar
  14. 14.
    Patton CE (1984) Magnetic excitations in solids. Phys Rep 103:251Google Scholar
  15. 15.
    Damon RW, Van De Vaart H (1965) Propagation of magnetostatic spin waves at microwave frequencies in a normally magnetized disk. J Appl Phys 36:3453Google Scholar
  16. 16.
    Damon RW, Eshbach JR (1961) Magnetostatic modes of a ferromagnet slab. J Phys Chem Solid 19:308Google Scholar
  17. 17.
    Eshbach JR, Damon RW (1960) Surface magnetostatic modes and surface spin waves. Phys Rev 118:1208Google Scholar
  18. 18.
    Demidov VE, Demokritov SO, Rott K, Krzystecko P, Reiss G (2008) Linear and nonlinear spin-wave dynamics in macro- and microscopic magnetic confined structures. J Phys D Appl Phys 41:164012Google Scholar
  19. 19.
    Akhiezer A, Baryakhtar V, Kaganov M (1960) Spin waves in ferromagnets and antiferromagnets. Uspekhi Fiz Nauk 71:108. English translation appears in collected papers in physics (1963) 124:108Google Scholar
  20. 20.
    Safonov VL (2012) Nonequilibrium magnons: theory, experiment and applications. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Demokritov SO, Demidov VE, Dzyapko O, Melkov GA, Serga AA, Hillebrands B, Slavin AN (2006) Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443:430Google Scholar
  22. 22.
    Bender SA, Duine RA, Tserkovnyak Y (2012) Electronic pumping of quasiequilibrium Bose-Einstein-condensed magnons. Phys Rev Lett 108:246601Google Scholar
  23. 23.
    Kalarickal SS, Krivosik P, Wu M, Patton CE, Schneider ML, Kabos P, Silva TJ, Nibarger JP (2006) Ferromagnetic resonance linewidth in metallic thin films: comparision of measurement methods. J Appl Phys 99:093909Google Scholar
  24. 24.
    Bilzer C, Devolder T, Crozat P, Chappert C, Cardoso S, Freitas PP (2007) Vector network analyzer ferromagnetic resonance of thin films on coplanar waveguides: comparison of different evaluation methods. J Appl Phys 101:074505Google Scholar
  25. 25.
    Kakazei GN, Mewes T, Wigen PE, Hammel PC, Slavin AN, Pogorelov Yu G, Costa MD, Golub VO, Guslienko KY, Novosad V (2008) Probing arrays of circular magnetic microdots by ferromagnetic resonance. J Nanosci Nanotechnol 8:2811Google Scholar
  26. 26.
    Demokritov SO, Hillebrands B, Slavin AN (2001) Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys Rep 348:442Google Scholar
  27. 27.
    Serga AA, Hillebrands B, Demokritov SO, Slavin AN, Wierzbicki P, Vasyuchka V, Dzyapko O, Chumak A (2005) Parametric generation of forward and phase-conjugated spin-wave bullets in magnetic films. Phys Rev Lett 94:167202Google Scholar
  28. 28.
    Serga AA, Demokritov SO, Hillebrands B, Slavin AN (2004) Self-generation of two-dimensional spin-wave bullets. Phys Rev Lett 92:117203Google Scholar
  29. 29.
    Serga AA, Kostylev MP, Hillebrands B (2008) Formation of guided spin-wave bullets in ferrimagnetic film stripes. Phys Rev Lett 101:137204Google Scholar
  30. 30.
    Bloembergen N, Damon RW (1952) Relaxation effects in ferromagnetic resonance. Phys Rev 85:699Google Scholar
  31. 31.
    Suhl H (1957) The theory of ferromagnetic resonance at high signal power. J Phys Chem Solid 1:209Google Scholar
  32. 32.
    Schlömann E, Green J, Milano V (1960) Recent development in ferromagnetic resonance at high power levels. J Appl Phys 31:386SGoogle Scholar
  33. 33.
    Schlömann E, Joseph RI (1961) Instability of spin waves and magnetostatic modes in a microwave magnetic field applied parallel to DC field. J Appl Phys 32:1006MathSciNetGoogle Scholar
  34. 34.
    Sparks M (1964) Ferromagnetic relaxation theory. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Dzyapko O, Kurebayashi H, Demidov VE, Evelt M, Ferguson AJ, Demokritov SO (2013) Effect of the magnetic film thickness on the enhancement of the spin current by multi-magnon processes. Appl Phys Lett 102:252409Google Scholar
  36. 36.
    Agrawal M, Vasyuchka VI, Serga AA, Karenowska AD, Melkov GA, Hillebrands B (2013) Direct measurement of magnon temperature: new insight into magnon-phonon coupling in magnetic insulators. Phys Rev Lett 111:1072Google Scholar
  37. 37.
    Gurevich AG, Melkov GA (1996) Magnetization oscillations and waves. CRC Press, Boca Raton, Chap 14Google Scholar
  38. 38.
    Ganguly AK, Webb DC (1975) Microstrip excitation of magnetostatic surface waves: theory and experiment. IEEE Trans Microwave Theory Tech 23:998Google Scholar
  39. 39.
    Kalinikos BA (1980) Excitation of propagating spin waves in ferromagnetic films. IEE Proc H Microwave Opt Antennas 127:1Google Scholar
  40. 40.
    Schneider T, Serga AA, Neumann T, Hillebrands B, Kostylev MP (2008) Phase reciprocity of spin-wave excitation by a microstrip antenna. Phys Rev B 77:214411Google Scholar
  41. 41.
    Demidov VE, Kostylev MP, Rott K, Krzysteczko P, Reiss G, Demokritov SO (2009) Excitation of microwaveguide modes by a stripe antenna. Appl Phys Lett 95:112509Google Scholar
  42. 42.
    Ishak WS, Reese E, Huijer E (1985) Magnetostatic wave devices for UHF band applications. Circuits Devices Syst IEE Proc 4:285Google Scholar
  43. 43.
    Vlaminck V, Bailleul M (2010) Spin-wave transduction at the submicrometer scale: experiment and modeling. Phys Rev B 81:014425Google Scholar
  44. 44.
    Huber R, Krawczyk M, Schwarze T, Yu H, Duerr G, Albert S, Grundler D (2013) Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry. Appl Phys Lett 102:012403Google Scholar
  45. 45.
    Au Y, Ahmad E, Dmytriiev O, Dvornik M, Davison T, Kruglyak VV (2012) Resonant microwave-to-spin-wave transducer. Appl Phys Lett 100:182404Google Scholar
  46. 46.
    Au Y, Dvornik M, Davison T, Ahmad E, Keatley PS, Vansteenkiste A, Van Waeyenberge B, Kruglyak VV (2013) Direct excitation of propagating spin waves by focused ultrashort optical pulses. Phys Rev Lett 110:097201Google Scholar
  47. 47.
    Lenk B, Ulrichs H, Münzenberg M (2011) The building blocks of magnonics. Phys Rep 507:107Google Scholar
  48. 48.
    Sandweg CW, Kajiwara Y, Chumak AV, Serga AA, Vasyuchka VI, Jungfleisch MB, Saitoh E, Hillebrands B (2011) Spin pumping by parametrically excited exchange magnons. Phys Rev Lett 106:216601Google Scholar
  49. 49.
    Demidov VE, Urazhdin S, Demokritov SO (2010) Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat Mater 9:984Google Scholar
  50. 50.
    Madami M, Bonetti S, Consolo G, Tacchi S, Carlotti G, Gubbiotti G, Mancoff FB, Yar MA, Åkerman J (2011) Direct observation of a propagating spin wave induced by spin-transfer torque. Nat Nanotechnol 6:635Google Scholar
  51. 51.
    Neusser S, Bauer HG, Duerr G, Huber R, Mamica S, Woltersdorf G, Krawczyk M, Back CH, Grundler D (2011) Tunable metamaterial response of a Ni80Fe20 antidot lattice for spin waves. Phys Rev B 84:184411Google Scholar
  52. 52.
    Park JP, Eames P, Engebretson DM, Berezovsky J, Crowell PA (2002) Spatially resolved dynamics of localized spin-wave modes in ferromagnetic wires. Phys Rev Lett 89:277201Google Scholar
  53. 53.
    Zhang Z, Hammel PC, Wigen PE (1996) Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy. Appl Phys Lett 68:2005Google Scholar
  54. 54.
    Klein O, Loubens G, Naletov VV, Boust F, Guillet T, Hurdequint H, Leksikov A, Slavin AN, Tiberkevich VS, Vukadinovic N (2008) Ferromagnetic resonance force spectroscopy of individual submicron-size samples. Phys Rev B 78:144410Google Scholar
  55. 55.
    Kurebayashi H, Dzyapko O, Demidov VE, Fang D, Ferguson AJ, Demokritov SO (2011) Spin pumping by parametrically excited short-wavelength spin waves. Appl Phys Lett 99:162502Google Scholar
  56. 56.
    Chumak AV, Serga AA, Jungfleisch MB, Neb R, Bozhko DA, Tiberkevich VS, Hillebrands B (2012) Direct detection of magnon spin transport by the inverse spin Hall effect. Appl Phys Lett 100:082405Google Scholar
  57. 57.
    Demidov VE, Demokritov SO, Rott K, Krzysteczko P, Reiss G (2008) Mode interference and periodic self-focusing of spin waves in permalloy mi-crostripes. Phys Rev B 77:064406Google Scholar
  58. 58.
    Demidov VE, Kostylev MP, Rott K, Krzysteczko P, Reiss G, Demokritov SO (2011) Generation of the second harmonic by spin waves propagating in microscopic stripes. Phys Rev B 83:054408Google Scholar
  59. 59.
    Clausen P, Vogt K, Schultheiss H, Schäfer A, Obry B, Wolf G, Pirro P, Leven B, Hillebrands B (2011) Mode conversion by symmetry breaking of propagating spin waves. Appl Phys Lett 99:162505Google Scholar
  60. 60.
    Chumak AV, Pirro P, Serga AA, Kostylev MP, Stamps RL, Schultheiss H, Vogt K, Hermsdoerfer SJ, Laegel B, Beck PA, Hillebrands B (2009) Spin-wave propagation in a microstructured magnonic crystal. Appl Phys Lett 95:262508Google Scholar
  61. 61.
    Mathieu C, Jorzick J, Frank A, Demokritov SO, Hillebrands B, Slavin AN, Bartenlian B, Chappert C, Decanini D, Rousseaux F, Cambril E (1998) Lateral quantization of spin waves in micron size magnetic wires. Phys Rev Lett 81:3968Google Scholar
  62. 62.
    Perzlmaier K, Buess M, Back CH, Demidov VE, Hillebrands B, Demokritov SO (2005) Spin-wave eigenmodes of permalloy squares with closure domain structure. Phys Rev Lett 94:057202Google Scholar
  63. 63.
    Schultheiss H, Schäfer S, Candeloro P, Leven B, Hillebrands B, Slavin AN (2008) Observation of coherence and partial decoherence of quantized spin waves in nano-scaled magnetic ring structures. Phys Rev Lett 100:047204Google Scholar
  64. 64.
    See also the cluster issue on magnonics (2010) J Phys D Appl Phys 43Google Scholar
  65. 65.
    Demidov VE, Demokritov SO, Rott K, Krzysteczko P, Reiss G (2007) Self-focusing of spin waves in Permalloy microstripes. Appl Phys Lett 91:252504Google Scholar
  66. 66.
    Schwarze T, Huber R, Duerr G, Grundler D (2012) Complete band gaps for magnetostatic forward volume waves in a two-dimensional magnonic crystal. Phys Rev B 85:134448Google Scholar
  67. 67.
    Tkachenko VS, Kuchko AN, Dvornik M, Kruglyak VV (2012) Propagation and scattering of spin waves in curved magnonic waveguides. Appl Phys Lett 101:152402Google Scholar
  68. 68.
    Brächer T, Pirro P, Westermann J, Sebastian T, Lägel B, Van de Wiele B, Vansteenkiste A, Hillebrands B (2013) Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures. Appl Phys Lett 102:132411Google Scholar
  69. 69.
    Vogt K, Schultheiss H, Jain S, Pearson JE, Hoffmann A, Bader SD, Hillebrands B (2012) Spin waves turning a corner. Appl Phys Lett 101:042410Google Scholar
  70. 70.
    Oogane M, Wakitani T, Yakata S, Yilgin R, Ando Y, Sakuma A, Miyazaki T (2006) Magnetic damping in ferromagnetic thin films. Jpn J Appl Phys 45:3889Google Scholar
  71. 71.
    Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett 93:082508Google Scholar
  72. 72.
    Conca A, Greser J, Sebastian T, Klingler S, Obry B, Leven B, Hillebrands B (2013) Low spin-wave damping in amorphous Co40Fe40B20 thin films. J Appl Phys 113:213909Google Scholar
  73. 73.
    Heusler F (1903) Über die Synthese ferromagnetischer Manganlegierungen. Verhandlungen der Deutschen Physikalischen Gesellschaft 5:217Google Scholar
  74. 74.
    de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024Google Scholar
  75. 75.
    Trudel S, Gaier O, Hamrle J, Hillebrands B (2010) Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: an experimental review. J Phys D Appl Phys 43:193001Google Scholar
  76. 76.
    Shan R, Sukegawa H, Wang WH, Kodzuka M, Furubayashi T, Ohkubo T, Mitani S, Inomata K, Hono K (2009) Demonstration of half-metallicity in Fermi-level-tuned Heusler alloy Co2FeAl0.5Si0.5 at room temperature. Phys Rev Lett 102:246601Google Scholar
  77. 77.
    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Giant tunneling magnetoresistance in Co2MnSi/Al–O/Co2MnSi magnetic tunnel junctions. Appl Phys Lett 88:192508Google Scholar
  78. 78.
    Kubota T, Tsunegi S, Oogane M, Mizukami S, Miyazaki T, Naganuma H, Ando Y (2009) Half-metallicity and Gilbert damping constant in Co2FexMn1−xSi Heusler alloys depending on the film composition. Appl Phys Lett 94:122504Google Scholar
  79. 79.
    Oogane M, Yilgin R, Shinano M, Yakata S, Sakuraba Y, Ando Y, Miyazaki T (2007) Magnetic damping constant of Co2FeSi Heusler alloy thin film. J Appl Phys 101:09J501Google Scholar
  80. 80.
    Yilgin R, Oogane M, Ando Y, Miyazaki T (2007) Gilbert damping constant in polycrystalline Co2MnSi Heusler alloy films. J Magn Magn Mater 310:2332Google Scholar
  81. 81.
    Yilgin R, Oogane M, Yakata S, Ando Y, Miyazaki T (2005) Intrinsic Gilbert damping constant in Co2MnAl Heusler alloy films. IEEE Trans Magn 41:2799Google Scholar
  82. 82.
    Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M, Miyazaki T (2009) Low damping constant for Co2FeAl Heusler alloy films and its correlation with density of states. J Appl Phys 105:07D306Google Scholar
  83. 83.
    Sebastian T, Ohdaira Y, Kubota T, Pirro P, Brächer T, Vogt K, Serga AA, Naganuma H, Oogane M, Ando Y, Hillebrands B (2012) Low-damping spin-wave propagation in a micro-structured Co2Mn0.6Fe0.4Si Heusler waveguide. Appl Phys Lett 100:112402Google Scholar
  84. 84.
    Schlömann E (1963) Generation of spin waves in nonuniform DC magnetic fields. I. Conversion of electromagnetic power into spinwave power and vice versa. J Appl Phys 35:159Google Scholar
  85. 85.
    Schlömann E, Joseph RI (1963) Generation of spin waves in nonuniform DC magnetic fields. II. Calculation of the coupling length. J Appl Phys 35:167Google Scholar
  86. 86.
    Schneider T, Serga AA, Chumak AV, Hillebrands B, Stamps RL, Kostylev MP (2010) Spin-wave tunnelling through a mechanical gap. Europhys Lett 90:27003Google Scholar
  87. 87.
    Stamps RL, Camley RE, Hillebrands B, Güntherodt G (1993) Spin-wave propagation on imperfect ultrathin ferromagnetic films. Phys Rev B 47:5072Google Scholar
  88. 88.
    Kostylev M, Serga A, Schneider T, Neumann T, Leven B, Hillebrands B, Stamps R (2007) Resonant and nonresonant scattering of dipole-dominated spin waves from a region of inhomogeneous magnetic field in a ferromagnetic field. Phys Rev B 76:184419Google Scholar
  89. 89.
    Demokritov SO, Serga AA, André A, Demidov VE, Kostylev MP, Hillebrands B (2004) Tunneling of dipolar spin waves through a region of inhomogeneous magnetic field. Phys Rev Lett 93:047201Google Scholar
  90. 90.
    Serga AA, Neumann T, Chumak AV, Hillebrands B (2009) Generation of spin-wave pulse trains by current-controlled magnetic mirrors. Appl Phys Lett 94:112501Google Scholar
  91. 91.
    Ustinov AB, Kolkov PI, Nikitin AA, Kalinikos BA, Fetisov YK, Srinivasan G (2011) Ferrite-ferroelectric phase shifters controlled by electric and magnetic fields. Tech Phys 56:821Google Scholar
  92. 92.
    Fetisov YK, Srinivasan G (2006) Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl Phys Lett 88:143503Google Scholar
  93. 93.
    Rovillain P, de Sousa R, Gallais Y, Sacuto A, Measson MA, Colson D, Forget A, Bibes M, Barthelemy A, Cazayous M (2010) Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nat Mater 9:975Google Scholar
  94. 94.
    Nozaki T, Shiota Y, Miwa S, Murakami S, Bonell F, Ishibashi S, Kubota H, Yakushiji K, Saruya T, Fukushima A, Yuasa S, Shinjo T, Suzuki Y (2012) Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat Phys 8:491Google Scholar
  95. 95.
    Bauer GEW, Saitoh E, van Wees BJ (2012) Spin caloritronics. Nat Mater 11:391Google Scholar
  96. 96.
    Obry B, Vasyuchka VI, Chumak AV, Serga AA, Hillebrands B (2012) Spin-wave propagation and transformation in a thermal gradient. Appl Phys Lett 101:192406Google Scholar
  97. 97.
    Kolokoltsev O, Qureshi N, Mejia-Uriarte E, Ordonez-Romero CL (2012) Hot spin-wave resonators and scatterers. J Appl Phys 112:013902Google Scholar
  98. 98.
    Adam JD, Collins JH (1976) Microwave magnetostatic delay devices on epitaxial yttrium iron garnet. Proc IEEE 64:794Google Scholar
  99. 99.
    Ishak WS (1988) Magnetostatic wave technology: a review. Proc IEEE 76:171Google Scholar
  100. 100.
    Owens JM, Collins JH, Carter RL (1985) System applications of magnetostatic wave devices. Circuits Dev Syst IEE Proc 4:317Google Scholar
  101. 101.
    Adam JD (1988) Analog signal processing with microwave magnetics. Proc IEEE 76:159Google Scholar
  102. 102.
    Wu M, Kalinikos BA, Carr LD, Patton CE (2006) Observation of spin-wave soliton fractals in magnetic film active feedback rings. Phys Rev Lett 96:187202Google Scholar
  103. 103.
    Demokritov SO, Serga AA, Demidov VE, Hillebrands B, Kostylev MP, Kalinikos BA (2003) Experimental observation of symmetry-breaking nonlinear modes in an active ring. Nature 426:159Google Scholar
  104. 104.
    Karenowska AD, Chumak AV, Serga AA, Gregg JF, Hillebrands B (2010) Magnonic crystal based forced dominant wavenumber selection in a spin-wave active ring. Appl Phys Lett 96:082505Google Scholar
  105. 105.
    Lock EH (2008) The properties of isofrequency dependences and the laws of geometrical optics. Uspekhi Fizicheskih Nauk 178:397Google Scholar
  106. 106.
    Schneider T, Serga AA, Chumak AV, Sandweg CV, Trudel S, Wolff S, Kostylev MP, Tiberkevich VS, Slavin AN, Hillebrands B (2010) Nondiffractive subwavelength wave beams in a medium with externally controlled anisotropy. Phys Rev Lett 104:197203Google Scholar
  107. 107.
    Demidov VE, Demokritov SO, Birt D, O’Gorman B, Tsoi M, Li X (2009) Radiation of spin waves from the open end of a microscopic magnetic-film waveguide. Phys Rev B 80:014459Google Scholar
  108. 108.
    Kalinikos BA, Kovshikov NG, Slavin AN (1990) Experimental-observation of magnetostatic wave envelope solitons in yttrium-iron-garnet films. Phys Rev B 42:8658Google Scholar
  109. 109.
    Bagada AV, Melkov GA, Serga AA, Slavin AN (1997) Parametric interaction of dipolar spin wave solitons with localized electromagnetic pumping. Phys Rev Lett 79:2137Google Scholar
  110. 110.
    Kalinikos BA, Kovshikov NG, Patton CE (1998) Self-generation of microwave magnetic envelope soliton trains in Yttrium Iron Garnet thin fims. Phys Rev Lett 80:4301Google Scholar
  111. 111.
    Balinskii MG, Danilov VV, Nechiporuk AY (1993) Experimental investigation of the quantum amplification effect for magnetostatic waves in ferrite-paramagnet structures. Zh Techn Fiz 63:122Google Scholar
  112. 112.
    Danilov VV, Nechiporuk AY (2002) Experimental investigation of the quantum amplification effect for magnetostatic waves in ferrite-paramagnet structures. Tech Phys Lett 28:369Google Scholar
  113. 113.
    Schlömann E (1969) Amplification of magnetostatic surface waves by interaction with drifting charge carriers in crossed electric and magnetic fields. J Appl Phys 40:1422Google Scholar
  114. 114.
    Bini M, Filetti PL, Millanta L, Rubino N (1978) Amplification of surface magnetic waves in transversely magnetized ferrite slabs. J Appl Phys 49:3554Google Scholar
  115. 115.
    Chang NS, Yamada S, Matsuo Y (1976) Amplification of magnetostatic surface waves in a layered structure consisting of metals, dielectrics, a semiconductor, and YIG. J Appl Phys 47:385Google Scholar
  116. 116.
    Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E (2008) Electric manipulation of spin relaxation using the spin Hall effect. Phys Rev Lett 101:03660Google Scholar
  117. 117.
    Seo S-M, Lee K-J, Yang H, Ono T (2009) Current-induced control of spin-wave attenuation. Phys Rev Lett 102:147202Google Scholar
  118. 118.
    Demidov VE, Urazhdin S, Edwards ERJ, Demokritov SO (2011) Wide-range control of ferromagnetic resonance by spin Hall effect. Appl Phys Lett 99:172501Google Scholar
  119. 119.
    Lu L, Sun YY, Jantz M, Wu MZ (2012) Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer. Phys Rev Lett 108:257202Google Scholar
  120. 120.
    Wang ZH, Sun YY, Wu MZ, Tiberkevich V, Slavin A (2011) Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys Rev Lett 107:146602Google Scholar
  121. 121.
    Hahn C, de Loubens G, Klein O, Viret M, Naletov VV, Ben Youssef J (2013) Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta. Phys Rev B 87:174417Google Scholar
  122. 122.
    Melkov GA, Serga AA, Slavin AN, Tiberkevich VS, Oleinik AN, Bagada AV (1999) Parametric interaction of magnetostatic waves with a nonstationary local pump. J Exp Theor Phys 89:1189Google Scholar
  123. 123.
    Chumak AV, Serga AA, Melkov GA, Tiberkevich V, Slavin AN, Hillebrands B (2009) Parametrically-stimulated recovery of a microwave signal using standing spin-wave modes of a magnetic film. Phys Rev B 79:014405Google Scholar
  124. 124.
    Melkov GA, Serga AA, Tiberkevich VS, Kobljanskij Yu V, Slavin AN (2001) Nonadiabatic interaction of a propagating wave packet with localized parametric pumping. Phys Rev E Stat Nonlin Soft Matter Phys 63:066607Google Scholar
  125. 125.
    Serga AA, Kostylev MP, Kalinikos BA, Demokritov SO, Hillebrands B, Benner H (2006) Parametric generation of soliton like spin-wave pulses in ring resonators based on ferromagnetic films. J Exp Theor Phys 102:497Google Scholar
  126. 126.
    Hagerstrom AM, Tong W, Wu M, Kalinikos BA, Eykholt R (2009) Excitation of chaotic spin waves in magnetic film feedback rings through three-wave nonlinear interactions. Phys Rev Lett 102:207202Google Scholar
  127. 127.
    Wu M, Hagerstrom AM, Kondrashov A, Kalinikos B (2009) Excitation of chaotic spin waves through modulational instability. Phys Rev Lett 102:237203Google Scholar
  128. 128.
    Melkov GA, Serga AA, Tiberkevich VS, Oliynyk AN, Slavin AN (2000) Wave front reversal of a dipolar spin wave pulse in a nonstationary three-wave parametric interaction. Phys Rev Lett 84:3438Google Scholar
  129. 129.
    Korpel A, Chatterjee M (1981) Nonlinear echoes, phase conjugation, time reversal, and electronic holography. Proc IEEE 69:1539Google Scholar
  130. 130.
    Kaplan DE, Hill RM, Hermann GF (1969) Amplified ferrimagnetic echoes. J Appl Phys 40:1164Google Scholar
  131. 131.
    Danilov VV, Tychinskii AV, Sugakov VI (1973) On the nature of the amplified spin echo in garnets. Russ Phys J 16:316Google Scholar
  132. 132.
    How H, Vittoria C (1991) Theory of amplified ferrimagnetic echoes. Phys Rev Lett 66:1626Google Scholar
  133. 133.
    Melkov GA, Dzyapko AD, Chumak AV, Slavin AN (2004) Two-magnon relaxation reversal in ferrite spheres. JETP Lett 99:1193Google Scholar
  134. 134.
    Melkov GA, Vasyuchka VI, Kobljanskyj Yu V, Slavin AN (2004) Wavefront reversal in a medium with inhomogeneities and an anisotropic wave spectrum. Phys Rev B 70:224407Google Scholar
  135. 135.
    Melkov GA, Vasyuchka VI, Chumak AV, Slavin AN (2005) Double-wavefront reversal of dipole-exchange spin waves in yttrium-iron garnet films. J Appl Phys 98:074908Google Scholar
  136. 136.
    Smith KR, Vasyuchka VI, Wu M, Melkov GA, Patton CE (2007) Cloning and trapping of magnetostatic spin-wave pulses by parametric pumping. Phys Rev B 76:054412Google Scholar
  137. 137.
    Serga AA, Chumak AV, André A, Melkov GA, Slavin AN, Demokritov SO, Hillebrands B (2007) Parametrically stimulated recovery of a microwave signal stored in standing spin-wave modes of a magnetic film. Phys Rev Lett 99:227202Google Scholar
  138. 138.
    Melkov GA, Kobljanskyj Yu V, Serga AA, Slavin AN, Tiberkevich VS (2001) Reversal of momentum relaxation. Phys Rev Lett 86:4918Google Scholar
  139. 139.
    Chumak AV, Vasyuchka VI, Serga AA, Kostylev MP, Tiberkevich VS, Hillebrands B (2012) Storage-recovery phenomenon in magnonic crystal. Phys Rev Lett 108:257207Google Scholar
  140. 140.
    Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386:143Google Scholar
  141. 141.
    Yang S, Page JH, Liu Z, Cowan ML, Chan CT, Sheng P (2004) Focusing of sound in a 3D phononic crystal. Phys Rev Lett 93:024301Google Scholar
  142. 142.
    Baba T (2008) Slow light in photonic crystals. Nat Photonics 2:465Google Scholar
  143. 143.
    Croënne C, Manga ED, Morvan B, Tinel A, Dubus B, Vasseur J, Hladky-Hennion A-C (2011) Negative refraction of longitudinal waves in a two-dimensional solid-solid phononic crystal. Phys Rev B 83:054301Google Scholar
  144. 144.
    Gulyaev Yu V, Nikitov SA (2001) Magnonic crystals and spin waves in periodic structures. Dokl Phys 46:687Google Scholar
  145. 145.
    Chumak AV, Serga AA, Hillebrands B, Kostylev MP (2008) Scattering of backward spin waves in a one-dimensional magnonic crystal. Appl Phys Lett 93:022508Google Scholar
  146. 146.
    Lee K-S, Han D-S, Kim S-K (2009) Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. Phys Rev Lett 102:127202Google Scholar
  147. 147.
    Beginin EN, Filimonov YA, Pavlov ES, Vysotskii SL, Nikitov SA (2012) Bragg resonances of magnetostatic surface spin waves in a layered structure: magnonic crystal-dielectric-metal. Appl Phys Lett 100:252412Google Scholar
  148. 148.
    Ustinov AB, Drozdovskii AV, Kalinikos BA (2010) Multifunctional nonlinear magnonic devices for microwave signal processing. Appl Phys Lett 96:142513Google Scholar
  149. 149.
    Wang ZK, Zhang VL, Lim HS, Ng SC, Kuok MH, Jain S, Adeyeye AO (2009) Observation of frequency band gaps in a one-dimensional nanostructured magnonic crystal. Appl Phys Lett 94:083112Google Scholar
  150. 150.
    Tacchi S, Duerr G, Klos JW, Madami M, Neusser S, Gubbiotti G, Carlotti G, Krawczyk M, Grundler D (2012) Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal. Phys Rev Lett 109:137202Google Scholar
  151. 151.
    Gubbiotti G, Tacchi S, Madami M, Carlotti G, Adeyeye AO, Kostylev M (2010) Brillouin light scattering studies of planar metallic magnonic crystals. J Phys D Appl Phys 43:264003Google Scholar
  152. 152.
    Kruglyak VV, Hicken RJ, Kuchko AN, Gorobets VY (2005) Spin waves in a periodically layered magnetic nanowire. J Appl Phys 98:014304Google Scholar
  153. 153.
    Gubbiotti G, Tacchi S, Carlotti G, Singh N, Goolaup S, Adeyeye AO, Kostylev M (2007) Collective spin modes in monodimensional magnonic crystals consisting of dipolarly coupled nanowires. Appl Phys Lett 90:092503Google Scholar
  154. 154.
    Zivieri R, Montoncello F, Giovannini L, Nizzoli F, Tacchi S, Madami M, Gubbiotti G, Carlotti G, Adeyeye AO (2011) Collective spin modes in chains of dipolarly interacting rectangular magnetic dots. Phys Rev B 83:054431Google Scholar
  155. 155.
    Krawczyk M, Puszkarski H (2008) Plane-wave theory of three-dimensional magnonic crystals. Phys Rev B 77:054437Google Scholar
  156. 156.
    Neusser S, Grundler D (2009) Magnonics: spin waves on the nanoscale. Adv Mater 21:2927Google Scholar
  157. 157.
    Obry B, Meyer T, Pirro P, Brächer T, Lagel B, Osten J, Strache T, Fassbender J, Hillebrands B (2013) Microscopic magnetic structuring of a spin-wave waveguide by ion implantation in a Ni81Fe19 layer. Appl Phys Lett 102:022409Google Scholar
  158. 158.
    Ustinov AB, Grigoryeva NY, Kalinikos BA (2008) Observation of spin-wave envelope solitons in periodic magnetic film structures. JETP Lett 88:31Google Scholar
  159. 159.
    Chumak AV, Dhagat P, Jander A, Serga AA, Hillebrands B (2010) Reverse Doppler effect of magnons with negative group velocity scattered from a moving Bragg grating. Phys Rev B 81:140404(R)Google Scholar
  160. 160.
    Kryshtal RG, Medved AV (2012) Surface acoustic wave in yttrium iron garnet as tunable magnonic crystals for sensors and signal processing applications. Appl Phys Lett 100:192410Google Scholar
  161. 161.
    Chumak AV, Neumann T, Serga AA, Hillebrands B, Kostylev MP (2009) A current-controlled, dynamic magnonic crystal. J Phys D Appl Phys 42:205005Google Scholar
  162. 162.
    Chumak AV, Karenowska AD, Serga AA, Hillebrands B (2012) The dynamic magnonic crystal: new horizons in artificial crystal based signal processing. In: Demokritov SO, Slavin AN (eds) Topics in applied physics, vol 125. Springer, New YorkGoogle Scholar
  163. 163.
    Chumak AV, Tiberkevich VS, Karenowska AD, Serga AA, Gregg JF, Slavin AN, Hillebrands B (2010) All-linear time reversal by a dynamic magnonic crystal. Nat Commun 1:141Google Scholar
  164. 164.
    Karenowska AD, Tiberkevich VS, Chumak AV, Serga AA, Gregg JF, Slavin AN, Hillebrands B (2012) Oscillatory energy exchange between waves coupled by a dynamic artificial crystal. Phys Rev Lett 108:015505Google Scholar
  165. 165.
    Sivan Y, Pendry JB (2011) Broadband time-reversal of optical pulses using a switchable photonic-crystal mirror. Opt Express 19:14502Google Scholar
  166. 166.
    Kostylev MP, Serga AA, Schneider T, Leven B, Hillebrands B (2005) Spin-wave logical gates. Appl Phys Lett 87:153501Google Scholar
  167. 167.
    Schneider T, Serga AA, Leven B, Hillebrands B, Stamps RL, Kostylev MP (2008) Realization of spin-wave logic gates. Appl Phys Lett 92:022505Google Scholar
  168. 168.
    Hansen UH, Demidov VE, Demokritov SO (2009) Dual-function phase shifter for spin-wave logic applications. Appl Phys Lett 94:252502Google Scholar
  169. 169.
    Hertel R, Wulfhekel W, Kirschner J (2004) Domain-wall induced phase shifts in spin waves. Phys Rev Lett 93:257202Google Scholar
  170. 170.
    Khitun A, Bao M, Wang KL (2008) Spin wave magnetic nanofabric: a new approach to spin-based logic circuitry. IEEE Trans Magn 44:2141Google Scholar
  171. 171.
    Khitun A, Bao MQ, Wang KL (2010) Magnonic logic circuits. J Phys D Appl Phys 43:264005Google Scholar
  172. 172.
    Chumak AV, Serga AA, Hillebrands B (2014) Magnon transistors for all-magnon data processing. Nat Commun 5:4700Google Scholar
  173. 173.
    Aronov AG (1976) Spin injection and polarization of excitations and nuclei in superconductors. Ah Eksp Teor Fiz 71:371Google Scholar
  174. 174.
    Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55:1790Google Scholar
  175. 175.
    Taniyama T, Wada E, Itoh M, Yamaguchi M (2011) Electrical and optical spin injection in ferromagnet/semiconductor heterostructures. NPG Asia Mater 3:65Google Scholar
  176. 176.
    van Roy W, van Dorpe P, Motsnyi V, Liu Z, Borghs G, de Boeck J (2004) Spin-injection in semiconductors: materials challenges and device aspects. Phys Status Solidi B 241:1470Google Scholar
  177. 177.
    Dyakonov MI, Perel VI (1971) Current-induced spin orientation of electrons in semiconductors. Phys Lett A 35:459Google Scholar
  178. 178.
    Dyakonov MI, Perel VI (1971) Possibility of orienting electron spins with current. JETP Lett 13:467Google Scholar
  179. 179.
    Hirsch JE (1999) Spin Hall effect. Phys Rev Lett 83:1834Google Scholar
  180. 180.
    Rashba EI (2008) Side jump contribution to spin-orbit mediated Hall effects and Berry curvature. Semiconductors 42:905Google Scholar
  181. 181.
    Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Quantifying spin Hall angles from spin pumping: experiments and theory. Phys Rev Lett 104:046601Google Scholar
  182. 182.
    Kato YK (2004) Observation of the spin Hall effect in semiconductors. Science 306:1105514Google Scholar
  183. 183.
    Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176Google Scholar
  184. 184.
    Saitoh E, Ueda M, Miyajima H, Tatara G (2006) Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl Phys Lett 88:182509Google Scholar
  185. 185.
    Ando K, Kajiwara Y, Sasage K, Uchida K, Saitoh E (2010) Inverse spin-Hall effect induced by spin pumping in various metals. IEEE Trans Magn 46:1331Google Scholar
  186. 186.
    Jungwirth T, Wunderlich J, Olejnik K (2012) Spin Hall effect devices. Nat Mater 11:382Google Scholar
  187. 187.
    Tserkovnyak Y, Brataas A, Bauer GEW (2002) Enhanced Gilbert damping in thin ferromagnetic films. Phys Rev Lett 88:117601Google Scholar
  188. 188.
    Costache MV, Sladkov M, Watts SM, van der Wal CH, van Wees BJ (2006) Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys Rev Lett 97:216603Google Scholar
  189. 189.
    Burrowes C, Heinrich B, Kardasz B, Montoya EA, Girt E, Sun Y, Song Y-Y, Wu M (2012) Enhanced spin pumping at yttrium iron garnet/Au interfaces. Appl Phys Lett 100:092403Google Scholar
  190. 190.
    Jungfleisch MB, Lauer V, Neb R, Chumak AV, Hillebrands B (2013) Improvement of the yttrium iron garnet/platinum interface for spin pumping-based applications. Appl Phys Lett 103:022411Google Scholar
  191. 191.
    Nakayama H, Ando K, Harii K, Yoshino T, Takahashi R, Kajiwara Y, Uchida K, Fujikawa Y, Saitoh E (2012) Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni81Fe19/Pt films. Phys Rev B 85:144408Google Scholar
  192. 192.
    Ulrichs H, Demidov VE, Demokritov SO, Lim WL, Melander J, Ebrahim-Zadeh N, Urazhdin S (2013) Optimization of Pt-based spin-Hall-effect spintronic devices. Appl Phys Lett 102:132402Google Scholar
  193. 193.
    Castel V, Vlietstra N, Ben Youssef J, van Wees BJ (2012) Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl Phys Lett 101:132414Google Scholar
  194. 194.
    Castel V, Vlietstra N, Ben Youssef J, and van Wees BJ (2014) YIG thickness and frequency dependence of the spin-charge current conversion in YIG/Pt systems. Phys Rev B 90:214434Google Scholar
  195. 195.
    Jungfleisch MB, Chumak AV, Kehlberger A, Lauer V, Kim DH, Onbasli MC, Ross CA, Kläui M, and Hillebrands B (2015) Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys Rev B 91:134407Google Scholar
  196. 196.
    Jungfleisch MB, Chumak AV, Vasyuchka VI, Serga AA, Obry B, Schultheiss H, Beck PA, Karenowska AD, Saitoh E, Hillebrands B (2011) Temporal evolution of inverse spin Hall effect voltage in a magnetic insulator-nonmagnetic metal structure. Appl Phys Lett 99:182512Google Scholar
  197. 197.
    d’Allivy Kelly O, Anane A, Bernard R, Ben Youssef J, Hahn C, Molpeceres AH, Carretero C, Jacquet E, Deranlot C, Bortolotti P, Lebourgeois R, Mage J-C, de Loubens G, Klein O, Cros V, Fert A (2013) Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system. Appl Phys Lett 103:082408Google Scholar
  198. 198.
    Slonczewski JC (1995) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1–L7Google Scholar
  199. 199.
    Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353Google Scholar
  200. 200.
    Brataas A, Kent AD, Ohno H (2012) Current-induced torques in magnetic materials. Nat Mater 11:372Google Scholar
  201. 201.
    Fert A (2008) Nobel lecture: origin, development, and future of spintronics. Rev Mod Phys 80:1517Google Scholar
  202. 202.
    Grünberg PA (2008) Nobel lecture: from spin waves to giant magnetoresistance. Rev Mod Phys 80:1531Google Scholar
  203. 203.
    Zimmler MA, Özyilmaz B, Chen W, Kent AD, Sun JZ, Rooks MJ, Koch RH (2004) Current-induced effective magnetic fields in Co/Cu/Co nanopillars. Phys Rev B 70:184438Google Scholar
  204. 204.
    Xia K, Kelly PJ, Bauer GEW, Brataas A, Turek I (2002) Spin torques in ferromagnetic/normal-metal structures. Phys Rev B 65:220401(R)Google Scholar
  205. 205.
    Schultheiss H, Janssens X, van Kampen M, Ciubotaru F, Hermsdoerfer SJ, Obry B, Laraoui A, Serga AA, Lagae L, Slavin AN, Leven B, Hillebrands B (2009) Direct current control of three magnon scattering processes in spin-valve nanocontacts. Phys Rev Lett 103:157202Google Scholar
  206. 206.
    Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC (2000) Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co Pillars. Phys Rev Lett 84:3149Google Scholar
  207. 207.
    Özyilmaz B, Kent AD, Sun JZ, Rooks MJ, Koch RH (2004) Current-induced excitations in single cobalt ferromagnetic layer nanopillars. Phys Rev Lett 93:176604Google Scholar
  208. 208.
    Liu RH, Lim WL, Urazhdin S (2013) Spectral characteristics of the microwave emission by the spin Hall nano-oscillator. Phys Rev Lett 110:147601Google Scholar
  209. 209.
    Demidov VE, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov SO (2012) Magnetic nano-oscillator driven by pure spin current. Nat Mater 11:1028Google Scholar
  210. 210.
    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E (2010) Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464:262Google Scholar
  211. 211.
    Wang ZH, Sun YY, Song YY, Wu MZ, Schultheiss H, Pearson JE, Hoffmann A (2011) Electric control of magnetization relaxation in thin film magnetic insulators. Appl Phys Lett 99:162511Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Alexy D. Karenowska
    • 1
  • A. V. Chumak
    • 2
  • A. A. Serga
    • 2
  • Burkard Hillebrands
    • 2
  1. 1.Department of Physics and Magdalen CollegeUniversity of OxfordOxfordUK
  2. 2.Fachbereich Physik and Forschungszentrum OPTIMASTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations