Magnetic Dichroism Studies of Spintronic Structures

  • Wenqing Liu
  • Yongbing Xu
  • Sameh Hassan
  • Jill Weaver
  • Gerrit van der Laan
Living reference work entry


The rise of spintronics has been closely linked with the development of instrumentation in nano-characterization over the past 20 years. The experimental side of spintronic research today has moved to a point where the paramount urgency is to use materials of the highest perfection and homogeneity as well as analysis tools with atomic sensitivity. Such criteria require usually exclusive techniques, dedicated equipment, and extreme physical conditions, such as ultrahigh vacuum, low temperatures, high fields, etc. This chapter presents some of the most advanced experimental tools, i.e., synchrotron-based magnetic dichroism techniques, which have facilitated the studies of many cutting-edge subjects of spintronics, such as the heterojunction interfacial magnetism, magnetic proximity effect, magnetism in diluted magnetic semiconductors (DMSs), doped topological insulators, half-metallic alloys, magnetic domain structures, and spin transfer torque (STT) effect.


Domain Wall Heusler Alloy Total Electron Yield Domain Wall Velocity Half Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


Body-centered cubic


Back-scattered electrons


Charge-coupled device


Current in plane


Current perpendicular to plane


Diluted magnetic semiconductor


Density of state


Dynamic random-access memory


Energy dispersive X-ray


Electron microscope


Field-effect transistor


Ferro- or ferrimagnetic material


Giant magnetoresistance


Hexagonal close packing


Half metal




Information technology


Left circularly polarized


Light emission diode




Magneto-optical Kerr effect


Magnetoresistive random-access memory




Right circularly polarized


Rare earth


Room temperature


Semiconductor or Spin Correction factor


Static random-access memory


Spin valve


Total electron yield


Total florescence yield


Time reversal symmetry


Ultrahigh vacuum


X-ray absorption spectroscopy


X-ray magnetic circular dichroism


X-ray photoemission electron microscopy


X-ray photoelectron spectroscopy


X-ray diffraction


  1. 1.
    van der Laan G, Figueroa AI (2014) X-ray magnetic circular dichroism – a versatile tool to study magnetism. Coord Chem Rev 277–278:95–129. doi:10.1016/j.ccr.2014.03.018Google Scholar
  2. 2.
    Sette F, Chen CT, Ma Y, Modesti S, Smith NV (1991) In Hasnain SS (ed) X-ray absorption fine structure, Ellis Horwood, Chichester, p 96Google Scholar
  3. 3.
    Lee J, Lauhoff G, Fermon C, Hope S, Bland JAC, Schillé JP, van der Laan G, Chappert C, Beauvillain P (1997) A direct test of x-ray magnetic circular dichroism sum rules for strained Ni films using polarized neutron reflection. J Phys Condens Matter 9:L137–L143ADSGoogle Scholar
  4. 4.
    Erskine JL, Stern EA (1975) Phys Rev B 12:5016ADSGoogle Scholar
  5. 5.
    Thole BT, van der Laan G, Sawatzky GA (1985) Strong magnetic dichroism predicted in the M4, 5 X-ray absorption spectra of magnetic rare earth materials. Phys Rev Lett 55:2086ADSGoogle Scholar
  6. 6.
    van der Laan G, Thole BT, Sawatzky GA, Goedkoop JB, Fuggle JC, Esteva JM, Karnatak RC, Remeika JP, Dabkowska HA (1986) Experimental proof of magnetic X-ray dichroism. Phys Rev B 34:6529ADSGoogle Scholar
  7. 7.
    Schutz G, Wagner W, Wilhelm W, Kienle P, Zeller R, Frahm R, Materlik G (1987) Absorption of circularly polarized X-rays in iron. Phys Rev Lett 58:737ADSGoogle Scholar
  8. 8.
    Schutz G, Frahm R, Mautner P, Wienke R, Wagner W, Wilhelm W, Kienle P (1989) Spin-dependent extended X-ray-absorption fine-structure – probing magnetic short-range order. Phys Rev Lett 62:2620ADSGoogle Scholar
  9. 9.
    Ebert H, Strange P, Gyorffy BL (1988) Theory of circularly polarized X-ray absorption by ferromagnetic Fe. J Appl Phys 63:3055ADSGoogle Scholar
  10. 10.
    Ebert H (1996) Magneto-optical effects in transition metal systems. Rep Prog Phys 59:1665ADSGoogle Scholar
  11. 11.
    Chen CT, Sette F, Ma Y, Modesti S (1990) Soft-X-ray magnetic circular-dichroism at the L 2,3 edges of nickel. Phys Rev B 42:7262ADSGoogle Scholar
  12. 12.
    van der Laan G, Thole BT (1991) Strong magnetic X-ray dichroism in 2p absorption spectra of 3d transition metal ions. Phys Rev B 43:13401–13411ADSGoogle Scholar
  13. 13.
    Thole BT, Carra P, Sette F, van der Laan G (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68:1943–1946ADSGoogle Scholar
  14. 14.
    Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 69:2307Google Scholar
  15. 15.
    van der Laan G (1998) Angular momentum sum rules for X-ray absorption. Phys Rev B 57:112ADSGoogle Scholar
  16. 16.
    Stöhr J (1999) Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J Magn Magn Mater 200:470–497. doi:10.1016/S0304-8853(99)00407-2ADSGoogle Scholar
  17. 17.
    Funk T, Deb A, George SJ, Wang H, Cramer SP (2005) X-ray magnetic circular dichroism—a high energy probe of magnetic properties. Coord Chem Rev 249:3–30. doi:10.1016/j.ccr.2004.05.017Google Scholar
  18. 18.
    Lovesey SW, Collins SP (1996) X-ray Scattering and Absorption by Magnetic Materials. Clarendon Press/Oxford University Press, Oxford/New York, p 377Google Scholar
  19. 19.
    Siegmann Stohr J, Siegmann HC (2006) Magnetism from fundamentals to nanoscale dynamics. Springer, BerlinGoogle Scholar
  20. 20.
    Groot F de, Kotani A (2008) Core level spectroscopy of solids. Adv Condens matter Sci xx, 490 p. doi: 10.1201/9781420008425Google Scholar
  21. 21.
    Clarke JA (2004) The science and technology of undulators and wigglers. Oxford science publications, OxfordGoogle Scholar
  22. 22.
    Duke PJ (2000) Synchrotron radiation: production and properties. Oxford science publications, OxfordGoogle Scholar
  23. 23.
    Wang H, Bencok P, Steadman P, Longhi E, Zhu J, Wang Z (2012) Complete polarization analysis of an APPLE II undulator using a soft X-ray polarimeter. J Synchrotron Radiat 19:944–948Google Scholar
  24. 24.
    Cooper M (2004) X-ray Compton scattering, Oxford series on synchrotron radiation. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Stöhr J, Siegmann HC (2006) Magnetism. Springer, New YorkGoogle Scholar
  26. 26.
    Stöhr J, Siegmann HC (2006) Magnetism from fundamentals to nanoscale dynamics. Springer, BerlinGoogle Scholar
  27. 27.
    van der Laan G (2006) Hitchhiker’s guide to multiplet calculations. Lecture notes in physics vol 697. Springer, Berlin, pp 143–200Google Scholar
  28. 28.
    van der Laan G, Thole BT (1990) Magnetic dichroism in the x-ray-absorption branching ratio. Phys Rev B 42:6670–6674ADSGoogle Scholar
  29. 29.
    van der Laan G, Thole BT (1988) Angular dependent photoelectric yield. Measurement of the La 3d Auger and autoionization life time widths. J Electron Spectrosc Relat Phenomenon 46:123–129Google Scholar
  30. 30.
    Shelford LR, Hesjedal T, Collins-McIntyre L, Dhesi SS, Maccherozzi F, van der Laan G (2012) Electronic structure of Fe and Co magnetic adatoms on Bi2Te3 surfaces. Phys Rev B86:081304ADSGoogle Scholar
  31. 31.
    Thole BT, van der Laan G, Fuggle JC, Sawatzky GA, Karnatak RC and JM Esteva (1985), 3d X-ray absorption lines and the 3d 94f n+1 multiplets of the lanthanides. Phys Rev B 32:5107–5118Google Scholar
  32. 32.
    Pattrick RAD, Van Der Laan G, Henderson CMB, Kuiper P, Dudzik E, Vaughan DJ (2002) Cation site occupancy in spinel ferrites studied by X-ray magnetic circular dichroism: developing a method for mineralogists. Eur J Mineral 14:1095–1102Google Scholar
  33. 33.
    Wu R, Wang D, Freeman AJ (1993) First principles investigation of the validity and range of applicability of the X-ray magnetic circular-dichroism sum-rule. Phys Rev Lett 71:3581ADSGoogle Scholar
  34. 34.
    Stöhr J, König H (1995) Phys Rev Lett 75:3748ADSGoogle Scholar
  35. 35.
    Dürr HA, van der Laan G (1996) Magnetic circular x-ray dichroism in transverse geometry: importance of noncollinear ground state moments. Phys Rev B 54:R760ADSGoogle Scholar
  36. 36.
    Collins SP, Laundy D, Tang CC, van der Laan G (1995) An investigation of uranium M 4,5 edge magnetic x-ray circular dichroism in US. J Phys Condens Matter 7:9325–9341ADSGoogle Scholar
  37. 37.
    van der Laan G, Thole BT (1996) X-ray absorption sum rules in jj-coupled operators and ground state moments of actinide ions. Phys Rev B 53:14458–14469ADSGoogle Scholar
  38. 38.
    van der Laan G (1999) Sum rule practice. J Synchrotron Rad 6:694Google Scholar
  39. 39.
    Wende H, Li Z, Scherz A, Ceballos G, Baberschke K, Ankudinov A, Rehr JJ, Wilhelm F, Rogalev A, Schlagel DL, Lograsso TA (2002) Quadrupolar and dipolar contributions to XMCD at the Tb L3,2-edges: experiment versus theory. J Appl Phys 91:7361ADSGoogle Scholar
  40. 40.
    Filipe A, Schuhl A, Galtier P (1997) Structure and magnetism of the Fe/GaAs interface. Appl Phys Lett 70:129ADSGoogle Scholar
  41. 41.
    Kneedler EM, Jonker BT, Thibado PM, Wagner RJ, Shanabrook BV, Whitman LJ (1997) Influence of substrate surface reconstruction on the growth and magnetic properties of Fe on GaAs(001). Phys Rev B 56:8163ADSGoogle Scholar
  42. 42.
    Prinz GA (1982) Magnetic properties of single-crystal (110) iron films grown on GaAs by molecular beam epitaxy (invited). J Appl Phys 53:2087ADSGoogle Scholar
  43. 43.
    Xu YB, Kernohan ETM, Freeland DJ, Ercole A, Tselepi M, Bland JAC et al (1998) Evolution of the ferromagnetic phase of ultrathin Fe films grown on GaAs(100)-4x6. Phys Rev B58:890–896ADSGoogle Scholar
  44. 44.
    Claydon JS, Xu YB, Tselepi M, et al (2004) Direct observation of a bulklike spin moment at the Fe/GaAs(100)-4 x 6 interface. Phys Rev Lett 93:037206–1. doi:10.1103/PhysRevLett.93.037206Google Scholar
  45. 45.
    Giovanelli L, Panaccione G, Rossi G et al (2005) Layer-selective spectroscopy of Fe/GaAs(001): influence of the interface on the magnetic properties. Phys Rev B 72:045221. doi:10.1103/PhysRevB.72.045221ADSGoogle Scholar
  46. 46.
    Xu YB, Tselepi M, Guertler CM et al (2001) Giant enhancement of orbital moments and perpendicular anisotropy in epitaxial Fe/GaAs(100). J Appl Phys 89:7156. doi:10.1063/1.1359473ADSGoogle Scholar
  47. 47.
    Krumme B, Weis C, Herper HC et al (2009) Local atomic order and element-specific magnetic moments of Fe3 Si thin films on MgO(001) and GaAs(001) substrates. Phys Rev B - Condens Matter Mater Phys 80:2–9. doi:10.1103/PhysRevB.80.144403Google Scholar
  48. 48.
    Telling ND, van der Laan G, Ladak S, Hicken RJ (2004) Spin polarization and barrier-oxidation effects at the Co/alumina interface in magnetic tunnel junctions. Appl Phys Lett 85:3803ADSGoogle Scholar
  49. 49.
    Tsunegi S, Sakuraba Y, Amemiya K, et al (2012) Observation of magnetic moments at the interface region in magnetic tunnel junctions using depth-resolved x-ray magnetic circular dichroism. Phys Rev B. doi:10.1103/PhysRevB.85.180408Google Scholar
  50. 50.
    Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic science. Science 281:951–956ADSGoogle Scholar
  51. 51.
    Esaki L, Stiles P, Molnar S (1967) Magnetointernal field emission in junctions of magnetic insulators. Phys Rev Lett 19:852–854ADSGoogle Scholar
  52. 52.
    Munekata H, Ohno H, von Molnar S, Segmüller A, Chang L, Esaki L (1989) Diluted magnetic III-V semiconductors. Phys Rev Lett 63:1849–1852ADSGoogle Scholar
  53. 53.
    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363ADSGoogle Scholar
  54. 54.
    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Electric-field control of ferromagnetism. Nature 408:944–946ADSGoogle Scholar
  55. 55.
    Chiba D, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K, Ohno H (2002) Control of ferromagnetism in field-effect transistor of a magnetic semiconductor. Phys E Low-dimensional Syst Nanostructures 12:351–355ADSGoogle Scholar
  56. 56.
    Furdyna JK, Kossut J (1988) Semiconductor and semimetals. Academic, New YorkGoogle Scholar
  57. 57.
    Adhikari T, Basu S (1994) Electrical properties of gallium manganese antimonide: a new diluted magnetic semiconductor. Jpn J Appl Phys 33:4581ADSGoogle Scholar
  58. 58.
    Edmonds KW, van der Laan G, Farley NRS, Campion RP, Gallagher BL, Foxon CT, Cowie BCC, Warren S, Johal TK (2011) Magnetic linear dichroism in the angular dependence of core-level photoemission from (Ga, Mn)As using hard X rays. Phys Rev Lett 107:197601ADSGoogle Scholar
  59. 59.
    Wang M, Campion RP, Rushforth AW, Edmonds KW, Foxon CT, Gallagher BL (2008) Achieving high Curie temperature in (Ga, Mn)As. Appl Phys Lett 93:132103ADSGoogle Scholar
  60. 60.
    Edmonds KW, Wang KY, Campion RP, Neumann AC, Farley NRS, Gallagher BL, Foxon CT (2002) High-Curie-temperature Ga[sub 1−x]Mn[sub x]As obtained by resistance-monitored annealing. Appl Phys Lett 81:4991ADSGoogle Scholar
  61. 61.
    MacDonald AH, Schiffer P, Samarth N (2005) Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat Mater 4:195–202ADSGoogle Scholar
  62. 62.
    Song C, Sperl M, Utz M, et al (2011) Proximity Induced Enhancement of the Curie Temperature in Hybrid Spin Injection Devices. 056601:1–4. doi:10.1103/PhysRevLett.107.056601Google Scholar
  63. 63.
    Maccherozzi F, Sperl M, Panaccione G, Minár J, Polesya S, Ebert H, Wurstbauer U, Hochstrasser M, Rossi G, Woltersdorf G, Wegscheider W, Back C (2008) Evidence for a magnetic proximity effect up to room temperature at Fe/(Ga, Mn)As interfaces. Phys Rev Lett 101:267201ADSGoogle Scholar
  64. 64.
    Sperl M, Maccherozzi F, Borgatti F, Verna A, Rossi G, Soda M, Schuh D, Bayreuther G, Wegscheider W, Cezar JC, Yakhou F, Brookes NB, Back CH, Panaccione G (2010) Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga, Mn)As heterostructures. Phys Rev B 81:035211ADSGoogle Scholar
  65. 65.
    Olejnik K, Wadley P, Haigh JA, et al (2010) Exchange bias in a ferromagnetic semiconductor induced by a ferromagnetic metal: Fe/(Ga,Mn)As bilayer films studied by XMCD measurements and SQUID magnetometry. Phys Rev B 81:104402. doi:10.1103/PhysRevB.81.104402Google Scholar
  66. 66.
    Nie SH, Chin YY, Liu WQ, Tung JC, Lu J, Lin HJ, Gu GY, Meng KK, Chen L, Zhu LJ, Pan D, Chen CT, Xu YB, Yan WS, Zhao JH (2013) Phys Rev Lett 111:027203ADSGoogle Scholar
  67. 67.
    Meng KK, Wang SL, Xu PF, Chen L, Yan WS, Zhao JH (2012) Magnetic properties of full-Heusler alloy Co2Fe1 − xMnxAl films grown by molecular-beam epitaxy. Appl Phys Lett 97(23):232506ADSGoogle Scholar
  68. 68.
    Chen L, Yan S, Xu PF, Lu J, Wang WZ, Deng JJ, Qian X, Ji Y, Zhao JH (2012) Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett 182505:1–4Google Scholar
  69. 69.
    Luo W, Qi X-L (2013) Massive Dirac surface states in topological insulator/magnetic insulator heterostructures. Phys Rev B 87:085431ADSGoogle Scholar
  70. 70.
    Eremeev SV, Men’shov VN, Tugushev VV, Echenique PM, Chulkov EV (2013) Magnetic proximity effect at the three-dimensional topological insulator/magnetic insulator interface. Phys Rev B 88:144430ADSGoogle Scholar
  71. 71.
    Men’shov V, Tugushev V, Eremeev S, Echenique P, Chulkov E (2013) Magnetic proximity effect in the three-dimensional topological insulator/ferromagnetic insulator heterostructure. Phys Rev B 88:224401ADSGoogle Scholar
  72. 72.
    Semenov YG, Duan X, Kim KW (2012) Electrically controlled magnetization in ferromagnet-topological insulator heterostructures. Phys Rev B 86:161406ADSGoogle Scholar
  73. 73.
    Kandala A, Richardella A, Rench DW, Zhang DM, Flanagan TC, Samarth N (2013) Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Appl Phys Lett 103:202409ADSGoogle Scholar
  74. 74.
    Yang QI, Dolev M, Zhang L, Zhao J, Fried AD, Schemm E, Liu M, Palevski A, Marshall AF, Risbud SH, Kapitulnik A (2013) Emerging weak localization effects on a topological insulator–insulating ferromagnet (Bi2Se3-EuS) interface. Phys Rev B88:081407ADSGoogle Scholar
  75. 75.
    Honolka J et al (2012) In-plane magnetic anisotropy of Fe atoms on Bi2Se3(111). Phys Rev Lett 108:256811ADSGoogle Scholar
  76. 76.
    Wray LA et al (2010) A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat Phys 7:32–37Google Scholar
  77. 77.
    West D et al (2012) Identification of magnetic dopants on the surfaces of topological insulators: Experiment and theory for Fe on Bi2Te3(111). Phys Rev B 85:081305ADSGoogle Scholar
  78. 78.
    Li J et al (2012) Magnetic dead layer at the interface between a Co film and the topological insulator Bi2Se3. Phys Rev B 86:054430ADSGoogle Scholar
  79. 79.
    Zhao X, Dai X-Q, Zhao B, Wang N, Ji Y-Y (2014) Cr adsorption induced magnetism in Bi2Se3 film by proximity effects. Phys E Low-Dimensional Syst Nanostructures 55:9–12ADSGoogle Scholar
  80. 80.
    Ivana Vobornik, Unnikrishnan Manju, Jun Fujii, Francesco Borgatti, Piero Torelli, Damjan Krizmancic, Yew San Hor, Robert J. Cava, Giancarlo Panaccione (2011) Nano Lett 11:4079Google Scholar
  81. 81.
    Liu W (2014) Enhancing magnetic ordering in Cr-doped Bi2Se3 using high-TC ferrimagnetic insulator. Nano Lett 15(1):764–769. doi:10.1021/nl504480gADSGoogle Scholar
  82. 82.
    Webster PJ, Ziebeck KRA (1988) In: Wijn HRJ (ed) Alloys and compounds of d-elements with main group elements. Part 2, vol 19c, Landolt- Börnstein, New Series, Group III. Springer, Berlin, pp 75–184Google Scholar
  83. 83.
    de Groot RA, Mueller FM (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024–2027ADSGoogle Scholar
  84. 84.
    Holmes SN, Pepper M (2002) Magnetic and electrical properties of Co2MnGa grown on GaAs (001). Appl Phys Lett 81:1651–1653Google Scholar
  85. 85.
    Chen CT, Idzerda YU, Lin H-J et al (1995) Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75:152–155. doi:10.1103/PhysRevLett.75.152Google Scholar
  86. 86.
    Xu YB, Hassan S, Wong P et al (2008) Hybrid spintronic structures with magnetic oxides and Heusler alloys. IEEE Trans Magn 44:2959–2965. doi:10.1109/TMAG.2008.2002188ADSGoogle Scholar
  87. 87.
    Beaurepaire E, Herve Bulou, Fabrice Scheurer, and Jean-Paul Kappler (1997) Magnetism and synchrotron radiation, Mittelwihr, 1996. Les Editions de Physique, Les UlisGoogle Scholar
  88. 88.
    Erwin SC, Lee S-H, Scheffler M (2002) Surface physics, low-dimensional systems, and related topics – first-principles study of nucleation, growth, and interface structure of Fe/GaAs. Phys Rev B 65:205–422Google Scholar
  89. 89.
    Mirbt S, Sanyal B, Isheden C, Johansson B (2003) Surface physics, low-dimensional systems, and related topics – First-principles calculations of Fe on GaAs(100). Phys Rev B 67:155–421Google Scholar
  90. 90.
    Elmers HJ, Wurmehl S, Fecher GH, et al (2004) Field dependence of orbital magnetic moments in the Heusler compounds Co 2 FeAl and Co 2 Cr 0.6 Fe 0.4 Al. Appl Phys A Mater Sci Process 79:557–563. doi:10.1007/s00339-003-2366-3Google Scholar
  91. 91.
    Wang WH, Przybylski M, Kuch W, Chelaru LI, Wang J, Lu YF, Barthel J, Meyerheim HL, Kirschner J (2005) Phys Rev B 71:144416ADSGoogle Scholar
  92. 92.
    Dedkov Y, Rüdiger U, Güntherodt G (2002) Evidence for the half-metallic ferromagnetic state of Fe3O4 by spin-resolved photoelectron spectroscopy. Phys Rev B65:064417ADSGoogle Scholar
  93. 93.
    Ramos R, Kikkawa T, Uchida K, Adachi H, Lucas I, Aguirre MH, Algarabel P, Morellón L, Maekawa S, Saitoh E, Ibarra MR (2013) Observation of the spin Seebeck effect in epitaxial Fe3O4 thin films. Appl Phys Lett 102:072413ADSGoogle Scholar
  94. 94.
    Liao Z-M, Li Y-D, Xu J, Zhang J-M, Xia K, Yu D-P (2006) Spin-filter effect in magnetite nanowire. Nano Lett 6:1087–91ADSGoogle Scholar
  95. 95.
    Gooth J, Zierold R, Gluschke JG, Boehnert T, Edinger S, Barth S, Nielsch K (2013) Gate voltage induced phase transition in magnetite nanowires. Appl Phys Lett 102:073112ADSGoogle Scholar
  96. 96.
    Hu G, Suzuki Y (2002) Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys Rev Lett 89:276601ADSGoogle Scholar
  97. 97.
    Arora S, Wu H-C, Choudhary R, Shvets I, Mryasov O, Yao H, Ching W (2008) Giant magnetic moment in epitaxial Fe3O4 thin films on MgO(100). Phys Rev B77:134443ADSGoogle Scholar
  98. 98.
    Goering E, Gold S, Lafkioti M, Schütz G (2006) Vanishing Fe 3d orbital moments in single-crystalline magnetite. Europhys Lett 73:97–103. doi:10.1209/epl/i2005-10359-8ADSGoogle Scholar
  99. 99.
    Wang W-G, Li M, Hageman S, Chien CL (2012) Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater 11:64–8ADSGoogle Scholar
  100. 100.
    McQueeney RJ, Yethiraj M, Montfrooij W, Gardner JS, Metcalf P, Honig JM (2006) Possible large spin–phonon coupling in magnetite. Phys B Condens Matter 385–386:75–78Google Scholar
  101. 101.
    Huang DJ, Chang CF, Jeng H-T, Guo GY, Lin H-J, Wu WB, Ku HC, Fujimori A, Takahashi Y, Chen CT (2004) Spin and orbital magnetic moments of Fe3O4. Phys Rev Lett 93:077204ADSGoogle Scholar
  102. 102.
    Kang J-S, Kim G, Lee H, Kim D, Kim H, Shim J, Lee S, Lee H, Kim J-Y, Kim B, Min B (2008) Soft x-ray absorption spectroscopy and magnetic circular dichroism study of the valence and spin states in spinel MnFe2O4. Phys Rev B77:035121ADSGoogle Scholar
  103. 103.
    Hari Babu V, Govind RK, Schindler K-M, Welke M, Denecke R (2013) Epitaxial growth and magnetic properties of ultrathin iron oxide films on BaTiO3(001). J Appl Phys 114:113901ADSGoogle Scholar
  104. 104.
    Li Y, Montano PA, Barbiellini B, Mijnarends PE, Kaprzyk S, Bansil A (2007) Spin moment over 10–300K and delocalization of magnetic electrons above the Verwey transition in magnetite. J Phys Chem Solids 68:1556–1560ADSGoogle Scholar
  105. 105.
    Duffy JA, Taylor JW, Dugdale SB, Shenton-Taylor C, Butchers MW, Giblin SR, Cooper MJ, Sakurai Y, Itou M (2010) Spin and orbital moments in Fe3O4. Phys Rev B 81:134424ADSGoogle Scholar
  106. 106.
    Goering E (2011) Large hidden orbital moments in magnetite. Phys Status Solidi 248:2345–2351Google Scholar
  107. 107.
    Liu WQ, Xu YB, Wong PKJ et al (2014) Spin and orbital moments of nanoscale Fe3O4 epitaxial thin film on MgO/GaAs(100). Appl Phys Lett 104:142407. doi:10.1063/1.4871001ADSGoogle Scholar
  108. 108.
    Orna J, Algarabel PA, Morellón L, Pardo JA, de Teresa JM, López Antón R, Bartolomé F, García LM, Bartolomé J, Cezar JC, Wildes A (2010) Origin of the giant magnetic moment in epitaxial Fe3O4 thin films. Phys Rev B 81:144420ADSGoogle Scholar
  109. 109.
    Antonov V, Harmon B, Yaresko A (2003) Electronic structure and x-ray magnetic circular dichroism in Fe3O4 and Mn-, Co-, or Ni-substituted Fe3O4. Phys Rev B67:024417ADSGoogle Scholar
  110. 110.
    Fischer P, Eimuller T, Schütz G, Guttmann P, Schmahl G, Pruegl K, Bayreuther G (1998) Imaging of magnetic domains by transmission X-ray microscopy. J Phys D Appl Phys 31:649ADSGoogle Scholar
  111. 111.
    Parkin SS, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190ADSGoogle Scholar
  112. 112.
    Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309:1688ADSGoogle Scholar
  113. 113.
    Berger L (1984) Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J Appl Phys 55:1954ADSGoogle Scholar
  114. 114.
    Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353ADSGoogle Scholar
  115. 115.
    Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1ADSGoogle Scholar
  116. 116.
    Lepadatu S, Xu YB (2004) Direct observation of domain wall scattering in patterned Ni80Fe20 and Ni nanowires by current–voltage measurements. Phys Rev Lett 92(12):127201ADSGoogle Scholar
  117. 117.
    Kläui M, Vaz CAF, Bland V, Wernsdorfer W, Faini G, Cambril E, Heyderman LJ, Nolting F, Ru¨diger U (2005) Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys Rev Lett 94:106601ADSGoogle Scholar
  118. 118.
    Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy YB, Parkin SSP (2007) Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys Rev Lett 98:037204ADSGoogle Scholar
  119. 119.
    Moore TA, Miron IM, Gaudin G, Serret G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Bonfim M (2008) High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Appl Phys Lett 93:262504ADSGoogle Scholar
  120. 120.
    Uhlíř V, Pizzini S, Rougemaille N, Novotný J, Cros V, Jiménez E, Faini G, Heyne L, Sirotti F, Tieg C, Bendounan A, Maccherozzi F, Belkhou R, Grollier J, Anane A, Vogel J (2010) Current-induced motion and pinning of domain walls in spin-valve nanowires studied by XMCD-PEEM. Phys Rev B 81:224418ADSGoogle Scholar
  121. 121.
    Thiaville A, Nakatani Y, Miltat J, Suzuki Y (2005) Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys Lett 69:990ADSGoogle Scholar
  122. 122.
    Bocklage L, Krüger B, Matsuyama T, Bolte M, Merkt U, Pfannkuche D, Meier G (2009) Dependence of magnetic domain-wall motion on a fast changing current. Phys Rev Lett 103:197204ADSGoogle Scholar
  123. 123.
    Thomas L, Hayashi M, Jiang X, Moriya R, Rettner C, Parkin SP (2006) Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length. Nature 443:197ADSGoogle Scholar
  124. 124.
    Meier G, Bolte M, Eiselt R, Krüger B, Kim DH, Fischer P (2007) Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys Rev Lett 98:187202ADSGoogle Scholar
  125. 125.
    Im M-Y, Bocklage L, Fischer P, Meier G (2009) Direct observation of stochastic domain-wall depinning in magnetic nanowires. Phys Rev Lett 102:147204ADSGoogle Scholar
  126. 126.
    Hu XF, Wu J, Niu DX, Chen L, Morton SA, Scholl A, Huang ZC, Zhai Y, Zhang W, Will I, Xu YB, Zhang R, van der Laan G (2013) Discontinuous properties of current-induced magnetic domain wall depinning. Sci Rep 3:3080. doi:10.1038/srep03080Google Scholar
  127. 127.
    Barkhausen H (1919) Z Phys 20:401Google Scholar
  128. 128.
    Cizeau P, Zapperi S, Durin G, Stanley HE (1997) Dynamics of a ferromagnetic domain wall and the Barkhausen effect. Phys Rev Lett 79:4669ADSGoogle Scholar
  129. 129.
    Beach GSD et al (2005) Nat Mater 4:741ADSGoogle Scholar
  130. 130.
    Heyne L, Klðui M, Backes D, et al (2008) Relationship between Nonadiabaticity and Damping in Permalloy Studied by Current Induced Spin Structure Transformations. Phys Rev Lett 100:066603. doi:10.1103/PhysRevLett.100.066603Google Scholar
  131. 131.
    Yang J, Nistor C, Beach GSD, Erskine JL (2008) Magnetic domain-wall velocity oscillations in permalloy nanowires. Phys Rev B 77:014413. doi:10.1103/PhysRevB.77.014413Google Scholar
  132. 132.
    Zhang W, Wong PKJ, Yan P, Wu J, Morton SA, Wang XR, Hu XF, Xu YB, Scholl A, Young A, Barsukov I, Farle M, van der Laan G (2013) Observation of current-driven oscillatory domain wall motion in Ni80Fe20/Co bilayer nanowire. Appl Phys Lett 103:42403Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Wenqing Liu
    • 1
  • Yongbing Xu
    • 1
  • Sameh Hassan
    • 1
  • Jill Weaver
    • 1
  • Gerrit van der Laan
    • 2
  1. 1.York Laboratory of Spintronics and Nanodevices, Department of ElectronicsThe University of YorkYorkUK
  2. 2.Magnetic Spectroscopy Group, Diamond Light SourceDidcotUK

Personalised recommendations