Advertisement

Magnetic III–V Semiconductor-Based Hybrid Structures

  • Yongbing Xu
  • Johnny Wong
  • Wenqing Liu
  • Daxin Niu
  • Wen Zhang
  • Yongxiong Lu
  • Sameh Hassan
  • Yu Yan
  • Iain Will
Living reference work entry

Abstract

The first generation spintronics based on the giant magneto-resistance effect (GMR, the 2007 Nobel Prize) in the magnetic multilayers has already generated huge impact to the mass data storage industries. The second generation spintronics based on magnetic-semiconductor hybrid structures aims to develop new spin based devices such as spin transistors and spin logic, which will not just improve the existing capabilities of electronic transistors, but will have new functionalities. These spin devices have the potential to integrate both data storage and processing, enabling future computers to run faster and at the same time consume less power. One of the major challenges for the development of the second generation spintronics is the integration of the magnetic and semiconductor materials. In this chapter, we will present the growth, interface magnetism and magneto-transport of several important magnetic/semiconductor hybrid spintronic structures, in particular, with III-V semiconductors such as GaAs and InAs. The magnetic materials include both ferromagnetic metals, Fe, Co and Ni and half metallic magnetic oxides, where a large spin polarisation at the Fermi is expected. The chapter will also report the modified magnetic properties in the patterned single crystal dots due to either dipole interaction or intrinsic structure changes.

Keywords

Dilute Magnetic Semiconductor Schottky Barrier Height Uniaxial Anisotropy RHEED Pattern Epitaxial Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

AFM

Atomic force microscopy

APB

Antiphase boundary

BCC

Body centered cubic

CMOS

Complementary metal-oxide-semiconductor

DFT

Density function theory

DMS

Diluted magnetic semiconductor

DOS

Density of state

EDX

Energy dispersive X-ray

EM

Electron microscope

FCC

Face centered cubic

FET

Field effect transistor

FM

Ferro- or ferri-magnetic material

GMR

Giant magnetoresistance

HCP

Hexagonal close packing

HM

Half metals

HMS

Hybrid magnetic semiconductor

IT

Information technology

LED

Light emission diode

LEED

Low energy electron diffraction

MBE

Molecular beam epitaxy

ML

Mono-layer

MOCVD

Metal-organic chemical vapor deposition

MOKE

Magneto-optical Kerr effect

MOSFET

Metal oxide semiconductor FET

MR

Magnetoresistance

MRAM

Magnetic random access memory

MTJ

Magnetic tunnel junction

PLD

Pulsed laser deposition

QHE

Quantum Hall effect

QSHE

Quantum spin Hall effect

QW

Quantum well

RAM

Magnetic random access memory

RHEED

Reflection high energy electron diffraction

RKKY

Ruderman-Kittel-Kasuya-Yosida

RT

Room temperature

SC

Semiconductor

SE

Secondary electron

SEM

Scanning electron microscope

SHE

Spin Hall effect

SQUID-VSM

Superconducting quantum interference devices–vibrating sample magnetometer

STM

Scanning tunneling microscopy

SV

Spin-valve

TEM

Transmission electron microscopy

TEY

Total electron yield

TFY

Total florescence yield

TI

Topological insulator

TRS

Time reversal symmetry

TSP

Titanium sublimation pump

UHV

Ultrahigh vacuum

UMA

Uniaxial magnetic anisotropy

XMCD

X-ray magnetic circular dichroism

XPS

X-ray photoelectron spectroscopy

References

  1. 1.
    Baibich MN et al (1988) Giant magnetoresistance of (001) Fe/ (001) Cr magnetic superlattices. Phys Rev Lett 61:2472ADSGoogle Scholar
  2. 2.
    Prinz GA (1998) Magnetoelectronics. Science 282:1660Google Scholar
  3. 3.
    Kikkawa JM, Awschalom DD (1999) Lateral drag of spin coherence in gallium arsenide. Nature 397:139ADSGoogle Scholar
  4. 4.
    Ohno H et al (1996) A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363ADSGoogle Scholar
  5. 5.
    Edmonds KW et al (2002) High-Curie-temperature Ga1-xMnxAsobtained by resistance-monitored annealing. Appl Phys Lett 81:4991ADSGoogle Scholar
  6. 6.
    Chiba D et al (2003) Effect of low-temperature annealing on (Ga,Mn) As trilayer structures. Appl Phys Lett 82:3020Google Scholar
  7. 7.
    Chambers SA, Farrow RFC (2003) New possibilities for ferromagnetic semiconductors. MRS Bull 28:729Google Scholar
  8. 8.
    Prinz GA et al (1982) Ferromagnetic resonance studies of very thin epitaxial single crystals of iron. J Appl Phys 53:2087ADSGoogle Scholar
  9. 9.
    Krebs JJ et al (1987) Properties of Fe single crystal films grown on (100)GaAs by molecular beam epitaxy. J Appl Phys 61:2596ADSGoogle Scholar
  10. 10.
    Florczak JM, Dahlberg ED (1991) Magnetization reversal in (100) Fe thin films. Phys Rev B 44:9338ADSGoogle Scholar
  11. 11.
    Filipe A, Schuhl A, Galtier P (1997) Structure and magnetism of the Fe/GaAs interface. Appl Phys Lett 70:129ADSGoogle Scholar
  12. 12.
    Kneeler EM, Jonker BT, Thibado PM, Wagner RJ, Shanabrook BV, Whitman LJ (1997) Influence of substrate surface reconstruction on the growth and magnetic properties of Fe on GaAs(001). Phys Rev B 56:8163ADSGoogle Scholar
  13. 13.
    Xu YB, Kernohan ETM, Freeland DJ, Ercole A, Tselepi M, Bland JAC (1998) Evolution of the ferromagnetic phase of ultrathin Fe films grown on GaAs (100)-4æ6. Phys Rev B 58:890ADSGoogle Scholar
  14. 14.
    Brockmann M et al (1999) In-plane volume and interface magnetic anisotropies in epitaxial Fe films on GaAs(0 0 1). J Magn Magn Mater 198:384ADSGoogle Scholar
  15. 15.
    Palstrom C (2003) Epitaxial heusler alloys: new materials for semiconductor spintronics. MRS Bull 28:725Google Scholar
  16. 16.
    Wei M et al (2005) Room temperature ferromagnetism in bulk Mn-Doped Cu2O. Appl Phys Lett 86:072514ADSGoogle Scholar
  17. 17.
    Lu YX et al (2004) Epitaxial growth and magnetic properties of half-metallic Fe3O4 on GaAs(100). Phys Rev B 70:233304ADSGoogle Scholar
  18. 18.
    Watts SM, Nakajima K, van Dijken S, Coey JMD (2004) Transport characteristics of magnetite thin films grown onto GaAs substrates. J Appl Phys 95(11):7465ADSGoogle Scholar
  19. 19.
    Rhoderick EH, Williams RH (1988) Metal semiconductor contacts. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Xu YB, Kernohan ETM, Tselepi M, Bland JAC, Holmes S (1998) Single crystal Fe films grown on InAs(100) by molecular beam epitaxy. Appl Phys Lett 73:399ADSGoogle Scholar
  21. 21.
    Claydon JS, Xu YB, Tselepi M, Bland JAC, van der Laan G (2004) Direct observation of a bulklike spin moment at the Fe/GaAs(100)-4x6 interface. Phys Rev Lett 93(3)Google Scholar
  22. 22.
    Xu YB et al (2002) Interface magnetic properties of epitaxial Fe-InAs heterostructures. IEEE Trans Magn 38:2652Google Scholar
  23. 23.
    Qikun X (1995) Structures of the Ga-Rich 4æ2 and 4æ6 Reconstructions of the GaAs(001) Surface. Phys Rev Lett 74:3177Google Scholar
  24. 24.
    Kendrick C, LeLay G, Kahm A (1996) Bias-dependent imaging of the In-terminated InAs(001) (4æ2)c(8æ2) surface by STM: reconstruction and transitional defect. A Phys Rev B 54:17877ADSGoogle Scholar
  25. 25.
    Qin XR, Lagally MG (1997) Adatom pairing structures for Ge on Si(100): the initial stage of island formation. Science 278:1444ADSGoogle Scholar
  26. 26.
    Xu YB et al (2000) Anisotropic lattice relaxation and uniaxial magnetic anisotropy in Fe/InAs(100)−4æ2. Phys Rev B62:1167ADSGoogle Scholar
  27. 27.
    Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120ADSGoogle Scholar
  28. 28.
    Shi J, Gider S, Babcock K, Awschalom DD (1996) Magnetic clusters in molecular beams, metals, and semiconductors. Science 271:937ADSGoogle Scholar
  29. 29.
    Pokrovskii V (1979) Influence of vacuum polarization by a magnetic field on the propagation of electromagnetic waves in a plasma. Adv Phys 28:595ADSGoogle Scholar
  30. 30.
    Thibado PM et al (1996) Nucleation and growth of Fe on GaAs(001)-(2æ4) studied by scanning tunneling microscopy. Phys Rev B53, R10481ADSGoogle Scholar
  31. 31.
    Xu YB et al (2000) Uniaxial magnetic anisotropy of epitaxial Fe films on InAs(100)-4 x 2 and GaAs(100)-4 x 2. J Appl Phys 87:6110ADSGoogle Scholar
  32. 32.
    Brockmann M, Zölfl M, Miethaner S, Bayreuther G (1999) In-plane volume and interface magnetic anisotropies in epitaxial Fe films on GaAs(0 0 1). 198:384Google Scholar
  33. 33.
    Dumm M et al (2000) Magnetism of ultrathin FeCo (001) films on GaAs(001). J Appl Phys 87:5457ADSGoogle Scholar
  34. 34.
    Tivakornsasithorn K, Liu X, Li X, Dobrowolska M, Furdyna JK (2014) Magnetic anisotropy in ultrathin Fe films on GaAs, ZnSe, and Ge (001) substrates. J Appl Phys 116:043915ADSGoogle Scholar
  35. 35.
    Morley NA et al (2006) Comparison between the in-plane anisotropies and magnetostriction constants of thin epitaxial Fe films grown on GaAs and Ga0.8In0.2As substrates with Cr overlayers. J Appl Phys 99:08N508Google Scholar
  36. 36.
    Ahmad E et al (2004) Hysteretic properties of epitaxial Fe/GaAs(100) ultrathin films under external uniaxial strain. J Appl Phys 95:6555ADSGoogle Scholar
  37. 37.
    Morley NA, Tang SL, Gibbs MRJ, Ahmad E, Will IG, Xu YB (2005) Magnetocrystalline anisotropies and magnetostriction of ultrathin Fe films on GaAs with Cr overlayers. J Appl Phys 10:10H501, Part 3 May 15Google Scholar
  38. 38.
    Claydon JS, Niu DX, Xu YB, Telling ND, Kirkman IW, van der Laan G (2005) XPS and XMCD study of Fe3O4/GaAs interface. IEEE Trans Magn 41(10):3325–3327ADSGoogle Scholar
  39. 39.
    Choi JW et al (2014) Uniaxial magnetic anisotropy in epitaxial Fe/MgO films on GaAs(001). J Magn Magn Mater 360:109–112ADSGoogle Scholar
  40. 40.
    Prinz GA (1985) Stabilization of bcc Co via epitaxial growth on GaAs. Phys Rev Lett 54:1051ADSGoogle Scholar
  41. 41.
    Blundell SJ, Gester M, Bland JAC, Daboo C, Gu E, Baird MJ, Ives AJR (1993) Structure induced magnetic anisotropy behavior in Co/GaAs(001) films. J Appl Phys 73:5948ADSGoogle Scholar
  42. 42.
    Gu E, Gester M, Hickens RJ, Daboo C, Tselepi M, Gray SJ, Bland JAC, Brown LM (1995) Fourfold anisotropy and structural behavior of epitaxial hcp Co/GaAs(001) thin films. Phy Rev B 2(20):14704ADSGoogle Scholar
  43. 43.
    Subramaniam S, Lie X, Stamps RL, Sooryakumr R, Prinz GA (1995) Magnetic anisotropies in body-centered-cubic cobalt films. Phys Rev B 52:10194ADSGoogle Scholar
  44. 44.
    Liu X, Stampps RL, Sooryakumar R et al (1996) Magnetic anisotropies in thick body centered cubic Co. J Appl Phys 79:5387ADSGoogle Scholar
  45. 45.
    Wu YZ, Ding HF, Jing C et al (1998) In-plane magnetic anisotropy of bcc Co on GaAs(001). Phy Rev B 57:11935ADSGoogle Scholar
  46. 46.
    Madani M, Tacchi S, Gubbiotti G, Ambrose T, Prinz GA (1999) Appl Phys Lett 75(3):346Google Scholar
  47. 47.
    Xu F, Joyee JJ, Ruckman MW, Chen HW, Boscherini F, Hill DM, Chambers SA, Weaver JW (1987) Epitaxy, overlayer growth, and surface segregation for Co/GaAs(110) and Co/GaAs(100)-c(82). Phys Rev B 35:2375ADSGoogle Scholar
  48. 48.
    Inzerda YU, Elam WT, Jonker BT, Prinz GA (1989) Structure determination of metastable cobalt films. Phys Rev Lett 62:2480ADSGoogle Scholar
  49. 49.
    Izquierdo M, Dabila ME, Avila J, Ascolani H, Teodorescu CM, Martin MG, Franco N, Chrost J, Arranz A, Asenio MC (2005) Epitaxy and magnetic properties of surfactant-mediated growth of bcc cobalt. Phys Rev Lett 94, 187601–1ADSGoogle Scholar
  50. 50.
    Liu AY, Singh AJ (1993) Elastic instability of bcc cobalt. Phys Rev B 47:8515ADSGoogle Scholar
  51. 51.
    Mangan MA, Spanos G, Ambrose T, Prinz GA (1999) Transmission electron microscopy investigation of Co thin films on GaAs(001). Appl Phys Lett 75(3):346ADSGoogle Scholar
  52. 52.
    Wieldraaijer H et al (2003) Growth of epitaxial bcc Co(001) electrodes for magnetoresistive devices. Phys Rev B 67:224430ADSGoogle Scholar
  53. 53.
    Inzerda YU et al (1990) Structure determination of metastable cobalt films deposited on GaAs. J Vac Sci Technol A8:1572ADSGoogle Scholar
  54. 54.
    Teodorescu CM et al (1998) Growth of epitaxial Co layers on Sb-passivated GaAs(110) substrates. Surf Rev Lett 5:279Google Scholar
  55. 55.
    Nath KG et al (2002) Passivation-mediated growth of Co on Se, S and O rich GaAs surfaces: a potential approach to control interface crystallinity and magnetic continuity. J Appl Phys 91:3943ADSGoogle Scholar
  56. 56.
    Zhang FP et al (1999) Studies of interface formation between Co with GaAs(100) and S-passivated GaAs(100), J Electron Spectros Relat Phenom, 10–103:485Google Scholar
  57. 57.
    Izquierdo M et al (2004) Influence of the substrate surface termination on the properties of bcc-cobalt films: GaAs(110) versus Sb/GaAs(110). Appl Surf Sci 234:468ADSGoogle Scholar
  58. 58.
    Andeson GW, Hanf MC, Norton PR (1995) Growth and magnetic properties of epitaxial Fe(100) on S-passivated GaAs(100). Phys Rev Lett 74:2764ADSGoogle Scholar
  59. 59.
    Nath KG, Maeda F, Suzuki S, Watanabi Y (2000) Epitaxy, modification of electronic structures, overlayer-substrate reaction and segregation in ferromagnetic Co films on Se-treated GaAs(001) surface. J Vac Sci Technol B 19:384Google Scholar
  60. 60.
    Morley NA et al (2006) Anisotropies and magnetostriction constants of epitaxial Co films on GaAs(100) substrates. J Phys Condens Matter 18:8781ADSGoogle Scholar
  61. 61.
    Walmsley R, Thompson J, Friedman D, White R, Geballe T (1983) Band structure of bcc cobalt. IEEE Trans Magn 19:1992ADSGoogle Scholar
  62. 62.
    Bland JAC, Bateson RD, Riedi PC, Graham RG, Lauter HJ, Penfold J, Shackelton C (1991) Magnetic properties of bcc Co films. J Appl Phys 69:4989ADSGoogle Scholar
  63. 63.
    Marcus PM, Moruzzi VL (1985) Equilibrium properties of the cubic phases of cobalt. Solid State Commun 55:9971Google Scholar
  64. 64.
    Soderlind P, Erikson O, Johansson B, Albers RC, Boring AM (1992) Spin and orbital magnetism in Fe-Co and Co-Ni alloys. Phys Rev B 45(99):12911Google Scholar
  65. 65.
    Singh D (1992) Arsenic poisoning of magnetism in bcc cobalt. J Appl Phys 71:3431ADSGoogle Scholar
  66. 66.
    Gutierrez CJ, Prinz GA, Krebs JJ, Filipkowski ME, Harris VG, Elam WT (1993) Magnetic and structural studies of epitaxial (001) Fe and (001) FexCo1-x alloy film structures. J Magn Magn Mater 126:232ADSGoogle Scholar
  67. 67.
    Tian CS, Qian D, Wu D, He RH, Wu YZ, Tang WX, Yin LF, Shi YS, Dong GS, Jin XF, Jiang XM, Liu FQ, Qian HJ, Sun K, Wang LM, Rossi G, Qiu ZQ, Shi J (2005) Body-centered-cubic Ni and its magnetic properties. Phys Rev Lett 94:137210ADSGoogle Scholar
  68. 68.
    Tang WX, Qian D, Wu D, Wu YZ, Dong GS, Jin XF, Chen SM, Jiang XM, Zhang XX, Zhang Z (2002) Growth and magnetism of Ni films on GaAs(001). J Magn Magn Mater 240:404ADSGoogle Scholar
  69. 69.
    Scheck C, Evans P, Zangari G, Schad R (2003) Sharp ferromagnet/semiconductor interfaces by electrodeposition of Ni thin films onto n-GaAs(001) substrates. Appl Phys Lett 82:2853ADSGoogle Scholar
  70. 70.
    Scheck C et al (2002) Structure and magnetic properties of electrodeposited Ni films on n-GaAs(001). J Phys Condens Matter 14:12329MathSciNetADSGoogle Scholar
  71. 71.
    Scheck C, Liu Y-K, Evans P, Schad R, Zangari G (2004) Evolution of interface properties of electrodeposited Ni/GaAs(001) contacts upon annealing. J Appl Phys 95:6549ADSGoogle Scholar
  72. 72.
    Sreenivasulu V et al (2014) Transport properties of electrodeposited epitaxial Ni(111) films on GaAs(110) with low defect density. Thin Solid Films 564:412Google Scholar
  73. 73.
    Kubaschewski O, Hopkins BE (1967) Oxidation of metals and alloys, 2nd edn. Butterworths, LondonGoogle Scholar
  74. 74.
    Lam NQ (1988) Ion bombardment effects on the near-surface composition during sputter profiling. Surf Interface Anal 12:65Google Scholar
  75. 75.
    Sigmund P (1987) Mechanisms and theory of physical sputtering by particle impact. Nucl Instrum Methods B 27:1ADSGoogle Scholar
  76. 76.
    Lee J-M et al (2012) Characterization of Fe3O4/GaAs(100) ultrathin films prepared by oxidizing kinetically-stabilized Fe layers. Thin Solid Films 526:47ADSGoogle Scholar
  77. 77.
    Coeyand JMD, Venkatesan M (2002) Half-metallic ferromagnetism: example of CrO2. J Appl Phys 91:8345ADSGoogle Scholar
  78. 78.
    Watts SM, Catherine B, van Dijken S, Coey JMD (2005) Magnetite Schottky barriers on GaAs substrates. Appl Phys Lett 86:212108ADSGoogle Scholar
  79. 79.
    Hassan SSA, Xu YB, Ahmad E, Lu YX (2007) Transport and magneto-transport characteristics of Fe3O4/GaAs hybrid structure. IEEE Trans Magn 43(6):2875–2877ADSGoogle Scholar
  80. 80.
    McLean AB, Williams RH (1988) Schottky contacts to cleaved GaAs (110) surfaces. I. Electrical properties and microscopic theories. J Phys C: Solid State Phys 21(4):783–806ADSGoogle Scholar
  81. 81.
    Akin S et al (2014) Improvement in electrical performance of half-metallic Fe3O4/GaAs structures using pyrolyzed polymer film as buffer layer. Philos Mag 94:2678–2691ADSGoogle Scholar
  82. 82.
    Zhang W, Zhang JZ, Wong PKJ, Huang ZC, Sun L, Liao JL, Zhai Y, Xu YB, van der Laan G (2011) Inplane uniaxial magnetic anisotropy in epitaxial Fe3O4-based hybrid structures on GaAs(100). Phys Rev B 84(10), 104451Google Scholar
  83. 83.
    Yan L, Wei H, Swartz AG, Pi K, Wong JJI, Mack S, Awschalom DD, Kawakami RK (2010) Oscillatory spin polarization and magneto-optical Kerr effect in Fe3O4 thin films on GaAs(001). Phys Rev Lett 105:167203ADSGoogle Scholar
  84. 84.
    Liu WQ, Xu YB, Wong PKJ, Maltby NJ, Li SP, Wang XF, Du J, You B, Wu J, Bencok P, Zhang R (2014) Spin and orbital moments of nanoscale Fe3O4 epitaxial thin film on MgO/GaAs(100). Appl Phys Lett 104:142407ADSGoogle Scholar
  85. 85.
    Leszcynski M, Teisseyre H, Suski T, Grzegory I, Bockowski M, Jun J, Porowski S, Pakula K, Baranowski JM, Foxon CT, Cheng TS (1996) Lattice parameters of gallium nitride. Appl Phys Lett 69:73ADSGoogle Scholar
  86. 86.
    Wong PKJ, Zhang W, Cui XG, Xu YB, Wu J, Tao ZK, Li X, Xie ZL, Zhang R, van der Laan G (2010) Ultrathin Fe3O4 epitaxial films on wide bandgap GaN(0001). Phys Rev B 81(3):035419ADSGoogle Scholar
  87. 87.
    Smith LL, King SW, Nemanich RJ, Davis RF (1996) Microstructure, electrical properties, and thermal stability of Al ohmic contacts to n-GaN. J Electron Mater 25:805ADSGoogle Scholar
  88. 88.
    Shiratsuchi Y, Endo Y, Yamamoto M, Bader SD (2005) Effect of substrate inclination on the magnetic anisotropy of ultrathin Fe films grown on Al2O3(0001). J Appl Phys 97:10J106Google Scholar
  89. 89.
    Rao CN, Raveau B (1995) Transitional metal oxides. VCH, New YorkGoogle Scholar
  90. 90.
    Xu YB, Hassan SSA, Wong PKJ, Claydon JS, Damsgaard CD, Hansen JB, Jacobsen CS, Zhai Y, Wu J, van der Laan G, Feidenhans R, Holmes SN (2008) Hybrid spintronic structures with magnetic oxides and heusler alloys. IEEE Trans Magn 44(11):2959–2965, Part 2Google Scholar
  91. 91.
    Ruby C, Humbert B, Fusy J (2000) Surface and interface properties of epitaxial iron oxide thin films deposited on MgO(001) studied by XPS and Raman spectroscopy. Surf Interface Anal 29:377Google Scholar
  92. 92.
    Fuiji T, de Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195ADSGoogle Scholar
  93. 93.
    Gota S, Guiot E, Henriot M, Gautier-Soyer M (1999) Atomic-oxygen-assisted MBE growth of α−Fe2O3 on α−Al2O3 (0001): metastable FeO(111)-like phase at subnanometer thicknesses. Phys Rev B 60:14387ADSGoogle Scholar
  94. 94.
    Morrall P, Schedin F, Case GS, Thomas MF, Dudzik E, van der Laan G, Thornton G (2003) Stoichiometry of Fe3−δO4(111) ultrathin films on Pt(111). Phys Rev B 67:214408ADSGoogle Scholar
  95. 95.
    Huang DJ, Chang CF, Jeng H-T, Guo GY, Lin H-J, Wu WB, Ku HC, Fujimori A, Takahashi Y, Chen CT (2004) Spin and orbital magnetic moments of Fe3O4. Phys Rev Lett 93:077204ADSGoogle Scholar
  96. 96.
    Signorini L, Pasquini L, Boscherini F, Bonetti E, Letard I, Brice-Profeta S, Sanctavit P (2006) Ultrathin Fe3O4 epitaxial films on wide bandgap GaN(0001). Phys Rev B 74:014426Google Scholar
  97. 97.
    Pellegrin E, Hagelstein M, Doyle S, Moser HO, Fuchs J, Vollath D, Schuppler S, James MA, Saxena SS, Niesen L, Rogojanu O, Sawatzky GA, Ferrero C, Borowski M, Tjernberg O, Brookes NB (1999) Perpendicular magnetic anisotropy and the reorientation transition of the magnetization in CeH2/Fe multilayers probed by x-ray magnetic circular dichroism. Phys Stat Solid (b) 215:797ADSGoogle Scholar
  98. 98.
    Margulies DT, Parker FT, Spada FE, Goldman RS, Li J, Sinclair R, Berkowitz AE (1996) Anomalous moment and anisotropy behavior in Fe3O4 films. Phys Rev B 53:9175ADSGoogle Scholar
  99. 99.
    Ziese M, Blythe HJ (2000) Magnetoresistance of magnetite. J Phys Condens Matter 12:13ADSGoogle Scholar
  100. 100.
    Eerenstein W, Palstra TTM, Hibma T, Celotto S (2002) Origin of the increased resistivity in epitaxial Fe3O4 films. Phys Rev B 66:201101ADSGoogle Scholar
  101. 101.
    Moussy JB, Gota S, Bataille A, Guittet MJ, Gautier-Soyer M, Delille F, Dieny B, Ott F, Doan TD, Warin P, Bayle-Guillemaud P, Gatel C, Snoeck E (2004) Thickness dependence of anomalous magnetic behavior in epitaxial Fe3O4(111)thin films: effect of density of antiphase boundaries. Phys Rev B 70:174448ADSGoogle Scholar
  102. 102.
    Okamoto S, Kohn K (1986) Magnetic ceramics. Gihodo, Japan, p 84Google Scholar
  103. 103.
    Jedema FJ, Heersche HB, Filip AT, Baselmans JJA, van Wees BJ (2002) Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416:713–717ADSGoogle Scholar
  104. 104.
    Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176–179ADSGoogle Scholar
  105. 105.
    Appelbaum I, Huang B, Monsma DJ (2007) Electronic measurement and control of spin transport in silicon. Nature 447:295–298ADSGoogle Scholar
  106. 106.
    Zutić I, Fabian J, Erwin SC (2006) Spin injection and detection in silicon. Phys Rev Lett 97:026602 (4 pages)ADSGoogle Scholar
  107. 107.
    Boothman C, Sánchez AM, van Dijken S (2007) Structural, magnetic, and transport properties of Fe3O4/Si(111) and Fe3O4/Si(001). J Appl Phys 101:123903 (7 pages)ADSGoogle Scholar
  108. 108.
    Jain S, Adeyeyea AO, Boothroyd CB (2005) Electronic properties of half metallic Fe3O4 films. J Appl Phys 97:093713ADSGoogle Scholar
  109. 109.
    Hassan SSA, Xu YB, Wu J, Thompson SM (2009) Epitaxial growth and magnetic properties of half-metallic Fe3O4 on Si(100) using MgO buffer layer. IEEE Trans Magn 45(10):4357–4359ADSGoogle Scholar
  110. 110.
    Allenspach R, Bischif A (1992) Magnetization direction switching in Fe/Cu (100) epitaxial films: temperature and thickness dependence. Phys Rev Lett 69:3385ADSGoogle Scholar
  111. 111.
    Berger A, Hopster H (1996) Nonequilibrium magnetization near the reorientation phase transition of Fe/Ag (100) films. Phys Rev Lett 76:519ADSGoogle Scholar
  112. 112.
    Soeckmann M, Oepen HP, Ibach H (1995) Morphology and magnetism of thin Co films on textured Au surfaces. Phys Rev Lett 75:2035ADSGoogle Scholar
  113. 113.
    Ozimek EJ, Paul DI (1984) Magnetization dynamics of micron size thin permalloy films. J Appl Phys 55:2232ADSGoogle Scholar
  114. 114.
    Herman DA Jr, Argyle BE, Petek B (1987) Bloch lines, cross ties, and taffy in permalloy. J Appl Phys 61:4200ADSGoogle Scholar
  115. 115.
    McVitie S, Chapman JN (1988) Magnetic structure determination in small regularly shaped particle using transmission electron microscopy. IEEE Trans Magn 24:1778ADSGoogle Scholar
  116. 116.
    Adeyeye AO, Bland JAC, Dadoo C, Lee J, Ebels U, Ahmed H (1996) Size dependence of the magnetoresistance in submicron FeNi wires. J Appl Phys 79:6120ADSGoogle Scholar
  117. 117.
    Takahashi S, Yamakawa K, Honda N, Ouchi K (1995) J Magn Magn Mater 148:88Google Scholar
  118. 118.
    Adeyeye AO, Lauhoff G, Bland JAC, Daboo C, Hasko DJ, Ahmed H (1997) Magnetoresistance behavior of submicron Ni80Fe20 wires. Appl Phys Lett 70:1046ADSGoogle Scholar
  119. 119.
    Gu E, Ahmad E, Bland JAC, Brown LM, Ruhrig M, McGibbon AJ, Chapman JN (1998) Micromagnetic structures and microscopic magnetization-reversal processes in epitaxial Fe/GaAs(001) elements. Phys Rev B 57(13):78143Google Scholar
  120. 120.
    Ahmad E, Bland JAC, Gu E (1998) Size dependence of the magnetization vector reversal processes in epitaxial Fe (001) microstripes. IEEE Trans Magn 34(4):1099ADSGoogle Scholar
  121. 121.
    Ahmad E, Lopez-Diaz L, Gu E, Bland JAC (2000) J Appl Phys 88(1):354Google Scholar
  122. 122.
    Gu E et al (1997) Micromagnetism of epitaxial Fe(001) elements on the mesoscale. Phys Rev Lett 78:1158ADSGoogle Scholar
  123. 123.
    Hillebrands B et al (1997) Brillouin light scattering investigations of structured permalloy films. J Appl Phys 81:4993ADSGoogle Scholar
  124. 124.
    Jorzick J et al (1999) Spin-wave quantization and dynamic coupling in micron- size circular magnetic dots. Appl Phys Lett 75:3859ADSGoogle Scholar
  125. 125.
    Grimsditch M et al (1998) Magnetic anisotropies in dot arrays: shape anisotropy versus coupling. Phys Rev B 58:11539ADSGoogle Scholar
  126. 126.
    Wirth S et al (1999) Magnetism of nanometer-scale iron particles arrays. J Appl Phys 85:5249ADSGoogle Scholar
  127. 127.
    Xu YB, Hirohata A, Gardiner SM, Tselepi T, Bland JAC, Cambril E, Rousseaux F, Launois H (2001) Effects of interdot dipole coupling in mesoscopic epitaxial Fe (100) dot arrays. IEEE Trans Magn 37:2055–2057ADSGoogle Scholar
  128. 128.
    Xu YB et al (2006) Mesoscovic magnetic/semiconductor heterostructures. IEEE Trans Nanotech 5:455ADSGoogle Scholar
  129. 129.
    Fruchart O et al (1999) Enhanced coercivity in submicrometer-sized ultrathin epitaxial dots with in-plane magnetization. Phys Rev Lett 82:1305ADSGoogle Scholar
  130. 130.
    Niu DX, Zou X, Zhai Y, Huang Z, Will I, Wong PKJ, Wu J, Xu YB (2009) Reduction of in-plane uniaxial magnetic anisotropy in patterned single-crystal Fe dot arrays. IEEE Trans Magn 45(10):3507–3510ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yongbing Xu
    • 1
  • Johnny Wong
    • 1
  • Wenqing Liu
    • 1
  • Daxin Niu
    • 1
  • Wen Zhang
    • 1
  • Yongxiong Lu
    • 1
  • Sameh Hassan
    • 1
  • Yu Yan
    • 1
  • Iain Will
    • 1
  1. 1.York Laboratory of Spintronics and Nanodevices, Department of ElectronicsThe University of YorkYorkUK

Personalised recommendations