Advertisement

Exchange Bias Material: FeMn

  • Shiming Zhou
  • Li Sun
  • Jun Du
Living reference work entry

Abstract

Since the exchange bias (EB) effect was discovered in the Co/CoO core-shell nanoparticles, it has been extensively studied in various ferromagnet/antiferromagnet material systems, both in experiments and in theory. Among many antiferromagnetic materials, metastable γ-FeMn emerges as the ideal material to reveal the physics mechanism behind the EB. In this chapter, the EB properties of FeMn-based bilayers are introduced by starting with the analysis of the spin configuration and structural and physical properties of bulk γ-FeMn, followed by the discussion of some basic features of the ferromagnetic/FeMn bilayers, such as the exchange field, the coercivity, the rotational hysteresis loss, and the blocking temperature as a function of the FeMn layer thickness, its crystalline microstructure, and temperature. Additionally, the thermal stability and training effect of the EB, the hysteretic effect of the angular dependent EB, and in particular the rotation of the pinning direction will be discussed in detail. The crucial role of the irreversible motion of FeMn spins will be analyzed as well.

Keywords

Training Effect Exchange Bias Hysteretic Behavior Uniaxial Anisotropy Spin Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

ADEB

Angular dependence of exchange bias

ΔθPD

Angular change of pinning direction in the training effect

θH

Angle of the external magnetic field with respect to the initial pinning direction

AFM

Antiferromagnet

tAFM

AFM layer thickness

TB

Blocking temperature

CW

Clockwise

HC

Coercivity

CCW

Counterclockwise

tCr

Critical thickness of antiferromagnetic layer of the exchange bias onset

TC

Curie temperature

n

Cycle number of hysteresis loops in the training effect

EB

Exchange bias

HE

Exchange bias field

Δσ

Exchange coupling energy

H

External magnetic field

FM

Ferromagnet

tFM

Ferromagnetic layer thickness

MFM

Ferromagnetic magnetization

GMR

Giant magnetoresistance

my

Magnetic moment of ferromagnetic layer perpendicular to the external magnetic field

mx

Magnetic moment of ferromagnetic layer parallel to the external magnetic field

MRAM

Magnetoresistive random access memory

T

Measurement temperature

TN

Néel temperature

mAFM

Net magnetic moment of the antiferromagnetic layer

θPD

Orientation of pinning direction

PD

Pinning direction

WR

Rotational hysteresis loss

References

  1. 1.
    Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 105(3):904–913ADSGoogle Scholar
  2. 2.
    Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475ADSGoogle Scholar
  3. 3.
    Dieny B, Speriosu VS, Parkin SSP, Gurney BA, Wilhoit DR, Mauri D (1991) Giant magnetoresistive in soft ferromagnetic multilayers. Phys Rev B 43(1):1297–1300ADSGoogle Scholar
  4. 4.
    Meiklejohn WH (1962) Exchange anisotropy-a review. J Appl Phys 33(3):1328–1335ADSGoogle Scholar
  5. 5.
    Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192(1):203–232ADSGoogle Scholar
  6. 6.
    Miller BH, Dahlberg ED (1996) Use of the anisotropic magnetoresistance to measure exchange anisotropy in Co/CoO bilayers. Appl Phys Lett 69(25):3932–3934ADSGoogle Scholar
  7. 7.
    Ambrose T, Sommer RL, Chien CL (1997) Angular dependence of exchange coupling in ferromagnet/antiferromagnet bilayers. Phys Rev B 56(1):83–86ADSGoogle Scholar
  8. 8.
    Hoffmann A (2004) Symmetry driven irreversibilities at ferromagnetic-antiferromagnetic interfaces. Phys Rev Lett 93(9):097203ADSGoogle Scholar
  9. 9.
    Nogués J, Leighton C, Schuller IK (2000) Correlation between antiferromagnetic interface coupling and positive exchange bias. Phys Rev B 61(2):1315–1317ADSGoogle Scholar
  10. 10.
    Massanet O, Montmory R, Néel L (1965) Magnetic properties of multilayer films of FeNi-Mn-FeNiCo and of FeNi-Mn. IEEE Trans Magn 1(1):63–65ADSGoogle Scholar
  11. 11.
    Coehoorn R (2003) Giant magnetoresistance and magnetic interaction in exchange biased spin valves. In: Buschow KHJ (ed) Handbook of magnetic materials. Elsevier/North-Holland, AmsterdamGoogle Scholar
  12. 12.
    Imakita KI, Tsunoda M, Takahashi M (2004) Giant exchange anisotropy observed in Mn-Ir/Co-Fe bilayers containing ordered Mn3Ir phase. Appl Phys Lett 85(17):3812ADSGoogle Scholar
  13. 13.
    Imakita KI, Tsunoda M (2005) Thickness dependence of exchange anisotropy of polycrystalline Mn3Ir/Co-Fe bilayers. J Appl Phys 97(10):10K106Google Scholar
  14. 14.
    Hansen M, Ardenko K (1958) Constitution of binary alloys. McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Kouvel JS, Kasper JS (1963) Long-range antiferromagnetism in disordered Fe-Ni-Mn alloys. J Phys Chem Solid 24(4):529–536ADSGoogle Scholar
  16. 16.
    Umebayashi H, Ishikawa Y (1966) Antiferromagnetism of gamma Fe-Mn alloys. J Physical Soc Japan 21(7):1281–1294ADSGoogle Scholar
  17. 17.
    Ishikawa Y, Endoh Y (1968) Antiferromagnetism of γ-FeMn Alloys. J Appl Phys 39(2):1318–1319ADSGoogle Scholar
  18. 18.
    Endoh Y, Ishikawa Y (1971) Antiferromagnetism of gamma iron manganese alloys. J Physical Soc Japan 30(6):1614–1627ADSGoogle Scholar
  19. 19.
    Takahashi T, Ukai T, Mori N (1988) On the magnetic structure of noncollinear γ-Fe70Mn30. J Appl Phys 63(8):3611–3613ADSGoogle Scholar
  20. 20.
    Akbar S, Kakehashi Y, Kimura N (1998) A molecular dynamics approach to magnetic alloys with turbulent complex magnetic structures: γ-FeMn alloys. J Phys Condens Matter 10(9):2081–2105ADSGoogle Scholar
  21. 21.
    Schulthess TC, Butler WH, Stocks GM, Maat S, Mankey GJ (1999) Noncollinear magnetism in substitutionally disordered face-centered-cubic FeMn. J Appl Phys 85(8):4842–4844ADSGoogle Scholar
  22. 22.
    Spišák D, Hafner J (2000) Magnetic structures in ordered and disordered γ-FeMn alloys: ordering due to disorder. Phys Rev B 61(17):11569–11575ADSGoogle Scholar
  23. 23.
    Jiles D (1998) Introduction to magnetism and magnetic materials. Chapman & Hall, LondonGoogle Scholar
  24. 24.
    Ali M, Marrows CH, Hickey BJ (2003) Onset of exchange bias in ultrathin antiferromagnetic layers. Phys Rev B 67(17):172405ADSGoogle Scholar
  25. 25.
    Wang J, Wang WN, Chen X, Zhao HW, Zhao JG, Zhan WS (2000) Asymmetry of coercivity dependence on temperature in exchange-biased FeMn/Co bilayers. Appl Phys Lett 77(17):2731–2733ADSGoogle Scholar
  26. 26.
    Mauri D, Siegmann HC, Bagus PS, Kay E (1987) Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate. J Appl Phys 62(7):3047–3049ADSGoogle Scholar
  27. 27.
    Vonsovskii SV (1974) Magnetism, vol 2. Wiley, New York, p 946Google Scholar
  28. 28.
    Stearns MB (1984) 3d elements: Fe, Co, Ni. In: Wijn HPJ (ed) Magnetic properties in metals, Landolt-Börnstein, vol III, part 19a. Springer, BerlinGoogle Scholar
  29. 29.
    Gilat G, Raubenheimer LJ (1966) Accurate numerical method for calculating frequency-distribution functions in solids. Phys Rev 144(2):390–395ADSGoogle Scholar
  30. 30.
    Hempstead RD, Krongelb S, Thompson DA (1978) Unidirectional anisotropy in Nickel-Iron films by exchange coupling with antiferromagnetic films. IEEE Trans Magn 14(5):521–523ADSGoogle Scholar
  31. 31.
    Tsang C, Heiman N, Lee K (1981) Exchange induced unidirectional anisotropy at FeMn-Ni80Fe20 interfaces. J Appl Phys 52(3):2471–2473ADSGoogle Scholar
  32. 32.
    Mauri D, Kay E, Scholl D, Howard JK (1987) Novel method for determining the anisotropy constant of MnFe in a NiFe/MnFe sandwich. J Appl Phys 62(7):2929–2932ADSGoogle Scholar
  33. 33.
    Allegranza O, Chen MM (1993) Effect of substrate and antiferromagnetic film’s thickness on exchange-bias field. J Appl Phys 73(10):6218–6222ADSGoogle Scholar
  34. 34.
    Lin T, Tsang C, Fontanat RE, Howard JK (1995) Exchange-coupled Ni-Fe/Fe-Mn, Ni-Fe/Ni-Mn and NiO/Ni-Fe films for stabilization of magnetoresistive sensors. IEEE Trans Magn 31(6):2585–2590ADSGoogle Scholar
  35. 35.
    Gao TR, Shi Z, Zhou SM, Chantrell R, Asselin P, Bai XJ, Du J, Zhang ZZ (2009) Exchange bias, training effect, hysteretic behavior of angular dependence, and rotational hysteresis loss in NiFe/FeMn bilayer: effect of antiferromagnet layer thickness. J Appl Phys 105(5):053913ADSGoogle Scholar
  36. 36.
    Sang H, Du YW, Chien CL (1999) Exchange coupling in Fe50Mn50/Ni81Fe19 bilayer: dependence on antiferromagnetic layer thickness. J Appl Phys 85(8):4931–4933ADSGoogle Scholar
  37. 37.
    McCord J, Mattheis R, Elefant D (2004) Dynamic magnetic anisotropy at the onset of exchange bias: the NiFe/IrMn ferromagnet/antiferromagnet system. Phys Rev B70(09):094420ADSGoogle Scholar
  38. 38.
    Kume T, Yamato T, Kato T, Tsunashima S, Iwata S (2007) Thickness dependence of exchange anisotropy for (0 0 1) oriented Mn89Pt11/NiFe and Mn80Ir20/NiFe bilayers. J Magn Magn Mater 310(2):2298–2300ADSGoogle Scholar
  39. 39.
    Wang YG, Petford-Long AK (2004) Magnetization reversal in the pinned layer of CoFe/PtMn bilayers. J Magn Magn Mater 279(1):82–90ADSGoogle Scholar
  40. 40.
    Xi HW, Bian B, Mountfield KR, Zhuang ZL, Laughlin DE, White RM (2003) Dependence of exchange bias in Ni81Fe19/PtxMn1−x (0 < x <0.2) bilayers on composition and microstructure. J Magn Magn Mater 260(1–2):273–281ADSGoogle Scholar
  41. 41.
    Nam NT, Thuy NP, Tuan NA, Phuoc NN, Suzuki T (2007) Giant exchange bias in MnPd/Co bilayers. J Magn Magn Mater 315(2):82–88ADSGoogle Scholar
  42. 42.
    Toney MF, Samant MG, Lin T, Mauri D (2002) Thickness dependence of exchange bias and structure in MnPt and MnNi spin valves. Appl Phys Lett 81(24):4564–4566ADSGoogle Scholar
  43. 43.
    Jungblut R, Coehoorn R, Johnson MT, Sauer C, van der Zaag PJ, Ball AR, Rijks TGSM, aan de Stegge J, Reinders A (1995) Exchange biasing in MBE-grown Ni80Fe20/Fe50Mn50 bilayers. J Magn Magn Mater 148(1–2):300–306ADSGoogle Scholar
  44. 44.
    Tsang C, Lee K (1982) Temperature dependence of unidirectional anisotropy effects in the Permalloy-FeMn systems. J Appl Phys 53(3):2605–2607ADSGoogle Scholar
  45. 45.
    Cain WC, Meiklejohn WH, Kryder MH (1987) Effects of temperature on exchange coupled alloys of Ni80Fe20-FeMn, Ni80Fe20-αFe203, and Ni80Fe20-TbCo. J Appl Phys 61(8):4170–4172ADSGoogle Scholar
  46. 46.
    Toney MF, Tsang C, Howard JK (1991) Thermal annealing study of exchange-biased NiFe-FeMn films. J Appl Phys 70(10):6227–6229ADSGoogle Scholar
  47. 47.
    Stiles MD, Mcmichael RD (1999) Temperature dependence of exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys Rev B 60(18):12950–12956ADSGoogle Scholar
  48. 48.
    Chikazumi S (1997) Physics of ferromagnetism. Clarendon, OxfordGoogle Scholar
  49. 49.
    Huang F, Kief MT, Mankey GJ, Willis RF (1994) Magnetism in the few-monolayers limit: a surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys Rev B49(6):3962–3971ADSGoogle Scholar
  50. 50.
    Lang XY, Zheng WT, Jiang Q (2007) Dependence of the blocking temperature in exchange biased ferromagnetic/antiferromagnetic bilayers on the thickness of the antiferromagnetic layer. Nanotechnology 18(15):155701ADSGoogle Scholar
  51. 51.
    Choe G, Gupta S (1997) High exchange anisotropy and high blocking temperature in strongly textured NiFe(111) /FeMn(111) films. Appl Phys Lett 70(13):1766–1768ADSGoogle Scholar
  52. 52.
    Xi HW, White RM, Gao Z, Mao SN (2002) Antiferromagnetic thickness dependence of blocking temperature in exchange coupled polycrystalline ferromagnet/antiferromagnet bilayers. J Appl Phys 92(8):4828–4830ADSGoogle Scholar
  53. 53.
    Devasahayam AJ, Kryder MH (1999) The dependence of the antiferromagnet/ferromagnet blocking temperature on antiferromagnet thickness and deposition conditions. J Appl Phys 85(8):5519–5521ADSGoogle Scholar
  54. 54.
    Fuke HN, Saito K, Yoshikawa M, Iwasaki H, Sahashi M (1999) Influence of crystal structure and oxygen content on exchange-coupling properties of IrMn/CoFe spin-valve films. Appl Phys Lett 75(23):3680–3682ADSGoogle Scholar
  55. 55.
    van Driel J, de Boer FR, Lenssen KMH, Coehoorn R (2000) Exchange biasing by Ir19Mn81: dependence on temperature, microstructure and antiferromagnetic layer thickness. J Appl Phys 88(2):975–982ADSGoogle Scholar
  56. 56.
    Rickart M, Guedes A, Ventura J, Sousa JB, Freitas PP (2005) Blocking temperature in exchange coupled MnPt/CoFe bilayers and synthetic antiferromagnets. J Appl Phys 97(10):10K110Google Scholar
  57. 57.
    Fecioru-Morariu M, Wrona J, Papusoi C, Güntherodt G (2008) Training and temperature effects of epitaxial and polycrystalline Ni80Fe20/Fe50Mn50 exchange biased bilayers. Phys Rev B 77(5):054441ADSGoogle Scholar
  58. 58.
    Michel RP, Chaiken A (1998) Exchange anisotropy in epitaxial and polycrystalline NiO/NiFe bilayers. Phys Rev B 58(13):8566–8573ADSGoogle Scholar
  59. 59.
    Shi Z, Qiu XP, Zhou SM, Bai XJ, Du J (2008) Anomalous training effect of perpendicular exchange bias in Pt/Co/Pt/IrMn multilayers. Appl Phys Lett 93(22):222504ADSGoogle Scholar
  60. 60.
    Nakatani R, Hoshino K, Noguchi S, Sugita Y (1994) Magnetoresistance and preferred orientation in Fe-Mn/Ni-Fe/Cu/Ni-Fe Sandwiches with various buffer layer materials. Jpn J Appl Phys 33(1A):133–137ADSGoogle Scholar
  61. 61.
    Ritchie L, Liu XY, Ingvarsson S, Xiao G, Du J, Xiao JQ (2002) Magnetic exchange bias enhancement through seed layer variation in FeMn/NiFe layered structures. J Magn Magn Mater 247(2):187–190ADSGoogle Scholar
  62. 62.
    Xu M, Lu ZQ, Tao Y, Liu CX, Cui SF, Mai ZH, Lai WY, Jia QJ, Zheng WL (2002) Relation between microstructures and magnetic properties upon annealing in Fe50Mn50/Ni80Fe20 films. J Appl Phys 92(4):2052–2057ADSGoogle Scholar
  63. 63.
    Mao M, Cerjan C, Law B, Grabner F, Vaidya S (2000) Influence of base pressure on FeMn exchange biased spin-valve films. J Appl Phys 87(9):4933–4935ADSGoogle Scholar
  64. 64.
    Li HY, Li J, Yuan SJ, Wang L, Zhou SM, Song JT (2002) Dependence of exchange coupling in Cu/FeMn/permalloy on the Cu buffer layer thickness. J Magn Magn Mater 246(1):1–5ADSGoogle Scholar
  65. 65.
    Nishioka K, Hou CH, Fujiwara H, Metzger RD (1996) Grain size effect on ferro-antiferromagnetic coupling of NiFe/FeMn systems. J Appl Phys 80(8):4528ADSGoogle Scholar
  66. 66.
    Chen MM, Tsang C, Gharsallah N (1993) Exchange bias enhancement through interdiffusion of NiFe/FeMn/Metal films. IEEE Trans Magn 29(6):4077–4079ADSGoogle Scholar
  67. 67.
    Chen KC, Wu YH, Wu KM, Wu JC, Horng L, Young SL (2007) Effect of annealing temperature on exchange coupling in NiFe/FeMn and FeMn/NiFe systems. J Appl Phys 101(09):09E516Google Scholar
  68. 68.
    Jimbo M, Yokochi S, Yamagishi K, Kurita J (2001) Improvement of thermal stability of exchange coupling in FeMn/NiFe films by Pt addition. J Appl Phys 89(11):7622–7624ADSGoogle Scholar
  69. 69.
    Dai B, Cai JW, Lai WY, Ge X, Zhang Z (2004) Improved pinning effect in PtMn/NiFe system by Cr addition into PtMn. Appl Phys Lett 85(22):5281–5283ADSGoogle Scholar
  70. 70.
    Samant MG, Lning J, Stöhr J, Parkin SSP (2000) Thermal stability of IrMn and MnFe exchange-biased magnetic tunnel junctions. Appl Phys Lett 76(21):3097–3099ADSGoogle Scholar
  71. 71.
    Iwasaki H, Saito AT, Tsutai O, Sahashi M (1997) Excellent reliability of CoFe-IrMn spin valves. IEEE Trans Magn 33(5):2875–2877ADSGoogle Scholar
  72. 72.
    Tondra M, Wang DX (1999) High temperature pinning properties of IrMn versus FeMn in spin valves. J Vac Sci Technol A 17(4):2220–2222ADSGoogle Scholar
  73. 73.
    Anderson GW, Huai YM, Pakala M (2000) Spin-valve thermal stability: the effect of different antiferromagnets. J Appl Phys 87(9):5726–5728ADSGoogle Scholar
  74. 74.
    Qiu XP, Yang DZ, Zhou SM, Chantrell R, O’Grady K, Nowak U, Du J, Bai XJ, Sun L (2008) Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers. Phys Rev Lett 101(14):147207ADSGoogle Scholar
  75. 75.
    Schlenker C, Paccard D (1967) Couplages Ferromagnétiques-Antiferromagnétiques: Étude Des Contractions De Cycles D’hystérésis A L’aide D’un Traceur De Cycle Très Basses Fréquences. J Phys 28(07):611–616Google Scholar
  76. 76.
    Zhang K, Zhao T, Fujiwara H (2001) Training effect of exchange biased iron-oxide/ferromagnet systems. J Appl Phys 89(11):6910–6912ADSGoogle Scholar
  77. 77.
    Hochstrat A, Binek C, Kleeman W (2002) Training of the exchange-bias effect in NiO-Fe heterostructures. Phys Rev B 66(09):092409ADSGoogle Scholar
  78. 78.
    Binek C (2004) Training of the exchange-bias effect: a simple analytic approach. Phys Rev B 70(01):014421ADSGoogle Scholar
  79. 79.
    Pina E, Prados C, Hernando A (2004) Large training effects in magnetic relaxation and anisotropic magnetoresistance in nanocrystalline exchange-biased Ni80Fe20/CoO bilayers. Phys Rev B 69(05):052402ADSGoogle Scholar
  80. 80.
    Binek C, Polisetty S, He X, Berger A (2006) Exchange bias training effect in coupled all ferromagnetic bilayer structures. Phys Rev Lett 96(06):067201ADSGoogle Scholar
  81. 81.
    Hauet T, Borchers JA, Mangin P, Henry Y, Mangin S (2006) Training effect in an exchange bias system: the role of interfacial domain walls. Phys Rev Lett 96(6):067207ADSGoogle Scholar
  82. 82.
    Xu M, Pan J, Shen Y, Hu JG (2010) Training effect in the ferromagnetic/antiferromagnetic bilayers. Acta Phys Sin 59(10):7357–7361Google Scholar
  83. 83.
    Kim DY, Yoon SS, Kim CG, Tsunoda M, Takahashi M (2009) Antiferromagnet thickness dependence of the training effect in exchange-coupled CoFe/MnIr bilayers. IEEE Trans Magn 45(10):3865ADSGoogle Scholar
  84. 84.
    Xi HW, Kryder MH, White RM (1999) Study of the angular-dependent exchange coupling between a ferromagnetic and an antiferromagnetic layer. Appl Phys Lett 74(18):2687–2689ADSGoogle Scholar
  85. 85.
    Mewes T, Nembach H, Rickart M, Demokritov SO, Fassbender J, Hillebrands B (2002) Angular dependence and phase diagrams of exchange-coupled epitaxial Ni81Fe19/Fe50Mn50(001) bilayers. Phys Rev B 65(22):224423ADSGoogle Scholar
  86. 86.
    Hao SP, Sui YX, Shan R, Sun L, Zhou SM (2005) Exchange biasing in as-prepared Co/FeMn bilayers and magnetic properties of ultrathin single layer films. Thin Solid Films 485:212–217ADSGoogle Scholar
  87. 87.
    Du J, Yang DZ, Bai XJ, Wu XS, Hu A, Zhou SM, Sun L (2006) Angular dependence of positive exchange biasing in GdFe/FeMn bilayers. J Appl Phys 99(08):08C103Google Scholar
  88. 88.
    Gao TR, Yang DZ, Zhou SM, Chantrell R, Asselin P, Du J, Wu XS (2007) Hysteretic behavior of angular dependence of exchange bias in FeNi/FeMn bilayers. Phys Rev Lett 99(05):057201ADSGoogle Scholar
  89. 89.
    Jiménez E, Camarero J, Sort J, Nogués J, Hoffmann A, Teran FJ, Perna P, García-Martín JM, Dieny B, Miranda R (2009) Highly asymmetric magnetic behavior in exchange biased systems induced by noncollinear field cooling. Appl Phys Lett 95(12):122508ADSGoogle Scholar
  90. 90.
    Chen G, Li J, Liu FZ, Zhu J, He Y, Wu J, Qiu ZQ, Wu YZ (2010) Four-fold magnetic anisotropy induced by the antiferromagnetic order in FeMn/Co/Cu(001) system. J Appl Phys 108(07):073905ADSGoogle Scholar
  91. 91.
    Radu F, Westphalen A, Theis-Bröhl K, Zabel H (2006) Quantitative description of the azimuthal dependence of the exchange bias effect. J Phys Condens Matter 18(3):L29–L36ADSGoogle Scholar
  92. 92.
    McCord J, Hamann C, Schäfer R, Schultz L, Mattheis R (2008) Nonlinear exchange coupling and magnetic domain asymmetry in ferromagnetic/IrMn thin films. Phys Rev B 78(09):094419ADSGoogle Scholar
  93. 93.
    Jimnez E, Camarero J, Sort J, Nogués J, Hoffmann A, Mikuszeit N, Garca-Martn JM, Dieny B, Miranda R (2009) Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems. Phys Rev B 80(1):014415ADSGoogle Scholar
  94. 94.
    Lommel JM, Graham CD (1962) Rotatable anisotropy in composite films. J Appl Phys 33(3):1160–1161ADSGoogle Scholar
  95. 95.
    Olamit J, Liu K (2007) Rotational hysteresis of the exchange anisotropy direction in Co/FeMn thin films. J Appl Phys 101(09):09E508Google Scholar
  96. 96.
    Berger A, Hovorka O, Friedman G, Fullerton EE (2008) Nonlinear and hysteretic exchange bias in antiferromagnetically coupled ferromagnetic bilayers. Phys Rev B 78(22):224407ADSGoogle Scholar
  97. 97.
    Zhang J, Du J, Bai XJ, You B, Zhang W, Hu A (2009) Training effect and hysteretic behaviour of angular dependence of exchange bias in Co/IrMn bilayers. Chin Phys Lett 26(4):047501ADSGoogle Scholar
  98. 98.
    Qiu XP, Shi Z, Zhou SM, Du J, Bai XJ, Chantrell R, Sun L (2009) Asymmetric recovery effect of exchange bias in polycrystalline NiFe/FeMn bilayers. J Appl Phys 106(06):063903ADSGoogle Scholar
  99. 99.
    Fulcomer E, Charap SH (1972) Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling. J Appl Phys 43(10):4190–4199ADSGoogle Scholar
  100. 100.
    Stiles MD, McMichael RD (1999) Model for exchange bias in polycrystalline ferromagnet-antiferromagnet bilayers. Phys Rev B 59(5):3722–3733ADSGoogle Scholar
  101. 101.
    Geshev J, Pereira LG, Schmidt JE (2002) Rotatable anisotropy and coercivity in exchange-bias bilayers. Phys Rev B 66(13):134432ADSGoogle Scholar
  102. 102.
    Choo D, Chantrell RW, Lamberton R, Johnston A, O’Grady K (2007) A model of the magnetic properties of coupled ferromagnetic/antiferromagnetic bilayers. J Appl Phys 101(09):09E521Google Scholar

Further Reading

  1. Berkowitz AE, Takano K (1999) Exchange anisotropy-a review. J Magn Magn Mater 200:552–570ADSGoogle Scholar
  2. Stamps RL (2000) Mechanisms for exchange bias. J Phys D Appl Phys 33(23):R247–R268ADSGoogle Scholar
  3. Kiwi M (2001) Exchange bias theory. J Magn Magn Mater 234:584–595ADSGoogle Scholar
  4. Nogués J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructures. Phys Rep Rev Sec Phys Lett 422(3):65–117Google Scholar
  5. Radu F, Zabel H (2008) Exchange bias effect of ferro-/antiferromagnetic heterostructures. Springer Tracts Modern Physics 227:97–184ADSGoogle Scholar
  6. Iglesias O, Labarta A, Batlle X (2008) Exchange bias phenomenology and models of core/shell nanoparticles. J Nanosci Nanotechnol 8(6):2761–2780Google Scholar
  7. O’Grady K, Fernandez-Outon LE, Vallejo-Fernandez G (2010) A new paradigm for exchange bias in polycrystalline thin films. J Magn Magn Mater 322:883–899ADSGoogle Scholar
  8. Giri S, Patra M, Majumdar S (2011) Exchange bias effect in alloys and compounds. J Phys Condens Matter 23(7):073201ADSGoogle Scholar
  9. Finazzi M, Duò L, Ciccacci F (2009) Magnetic properties of interfaces and multilayers based on thin antiferromagnetic oxide films. Surf Sci Rep 64(4):139–167ADSGoogle Scholar
  10. Binek C (2009) Tunable exchange bias effects. In: Liu JP, Fullerton E, Gutfleisch O, Sellmyer DJ (eds) Nanoscale magnetic materials and applications. Springer, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Physics Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Department of Mechanical Engineering and Texas Center for Superconductivity (TcSUH)University of HoustonHoustonUSA
  3. 3.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations