Skip to main content

Angular Momentum Based Balance Control

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Humanoid Robotics: A Reference

Abstract

Maintaining balance under dynamic external disturbances and environmental conditions remains a key challenge of humanoid robots. As the centroidal dynamics of humanoid states that both linear and angular momenta must be regulated to completely control the balance, the momentum-based balance control approaches maintain the balance through controlling both the linear and angular momenta of a robot. In this setting, the joint motion of a humanoid robot is typically controlled to realize the desired momentum rate change while satisfying non-slip constraints for the support feet as well as some task objectives such as the desired posture. After reviewing related work, we establish the basic theories that compute centroidal momentum and its relation with the generalized coordinates of a humanoid robot. Then we introduce approaches to controlling momentum, such as the resolved momentum control and computed torque-based control. Subsequently, we present several momentum-based approaches to maintaining humanoid robots’ stationary balance in detail. Several ideas to set the desired angular momentum are presented as well. The chapter concludes with the discussion of the limitations and open questions for the momentum-based balance control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Kagami, F. Kanehiro, M.I. Y. Tamiya, H. Inoue, AutoBalancer: an online dynamic balance compensation scheme for humanoid robots, in Proceedings of the 4th International Workshop on Algorithmic Foundation on Robotics, 2000

    Google Scholar 

  2. S. Kudoh, T. Komura, K. Ikeuchi, The dynamic postural adjustment with the quadratic programming method, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2002

    Google Scholar 

  3. T. Komura, H. Leung, S. Kudoh, J. Kuffner, A feedback controller for biped humanoids that can counteract large perturbations during gait, in IEEE International Conference on Robotics and Automation (ICRA), Barcelona, 2005, pp. 2001–2007

    Google Scholar 

  4. M.B. Popovic, A.G. Hofmann, H. Herr, Angular momentum regulation during human walking: biomechanics and control, in IEEE International Conference on Robotics and Automation (ICRA), New Orleans, 2004, pp. 2405–2411

    Google Scholar 

  5. A. Macchietto, V. Zordan, C.R. Shelton, Momentum control for balance. ACM Trans. Graph. 28(3), 80:1–80:8 (2009)

    Article  Google Scholar 

  6. M. Vukobratovic, D. Juricic, Contribution to the synthesis of biped gait. IEEE Trans. Bio-Medical Eng. 16(1), 1–6 (1969)

    Article  Google Scholar 

  7. A. Sano, J. Furusho, Realization of natural dynamic walking using the angular momentum information, in IEEE International Conference on Robotics and Automation (ICRA), 1990, pp. 1476–1481

    Google Scholar 

  8. Benjamin Stephens. Integral control of humanoid balance, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2007

    Google Scholar 

  9. T. Sugihara, Y. Nakamura, H. Inoue, Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA’02), vol. 2 (IEEE, 2002), pp. 1404–1409

    Google Scholar 

  10. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, vol. 2, 2003, pp. 1644–1650

    Google Scholar 

  11. Y. Choi, D. Kim, Y. Oh, B.-J. You, Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion. IEEE Trans. Robot. 23(6), 1285–1293 (2007)

    Article  Google Scholar 

  12. J. Park, Y. Youm, W.-K. Chung, Control of ground interaction at the zero-moment point for dynamic control of humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA), 2005, pp. 1724–1729

    Google Scholar 

  13. B.J. Stephens, C.G. Atkeson, Dynamic balance force control for compliant humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010

    Google Scholar 

  14. C. Zhou, Q. Meng, Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets Syst. 134(1), 169–187 (2003)

    Article  MathSciNet  Google Scholar 

  15. U. Muico, Y. Lee, J. Popović, Z. Popović, Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 81:1–81:9 (2009)

    Article  Google Scholar 

  16. Q. Huang, Y. Nakamura, Sensory reflex control for humanoid walking. IEEE Trans. Robot. 21(5), 977–984 (2005)

    Article  Google Scholar 

  17. A. Goswami, V. Kallem, Rate of change of angular momentum and balance maintenance of biped robots, in IEEE International Conference on Robotics and Automation (ICRA), 2004, pp. 3785–3790

    Google Scholar 

  18. S.-H. Hyon, N. Yokoyama, T. Emura, Back handspring robot – target dynamics-based control, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2004, pp. 248–253

    Google Scholar 

  19. K. Mitobe, G. Capi, Y. Nasu, A new control method for walking robots based on angular momentum. Mechatronics 14(2), 163–174 (2004)

    Article  Google Scholar 

  20. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, H. Hirukawa, The 3D linear inverted pendulum model: a simple modeling for a biped walking pattern generator, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Maui, Hawaii, 2001, pp. 239–246

    Google Scholar 

  21. N. Naksuk, Y. Mei, L.C.S. George, Humanoid trajectory generation: an iterative approach based on movement and angular momentum criteria, in IEEE/RAS International Conference on Humanoid Robots, 2004, pp. 576–591

    Google Scholar 

  22. S.-H. Hyon, R. Osu, Y. Otaka, Integration of multi-level postural balancing on humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA), 2009, pp. 1549–1556

    Google Scholar 

  23. N.E. Sian, K. Yokoi, S. Kajita, F. Kanehiro, K. Tanie, Whole body teleoperation of a humanoid robot -a method of integrating operator’s intention and robot’s autonomy, in IEEE International Conference on Robotics and Automation (ICRA), 2003

    Google Scholar 

  24. K.-H. Ahn, Y. Oh, Walking control of a humanoid robot via explicit and stable CoM manipulation with the angular momentum resolution, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2006

    Google Scholar 

  25. B. Ugurlu, A. Kawamura, Eulerian ZMP resolution based bipedal walking: Discussion on the intrinsic angular momentum rate change about center of mass, in IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 4218–4223

    Google Scholar 

  26. Y. Ye, C.K. Liu, Optimal feedback control for character animation using an abstract model. ACM Trans. Graph. 29(3), 74:1–74:9 (2010)

    Article  Google Scholar 

  27. M. de Lasa, I. Mordatch, A. Hertzmann, Feature-based locomotion controllers. ACM Trans. Graph. 29(3), 131:1–131:10 (2010)

    Google Scholar 

  28. M. Abdallah, A. Goswami, A biomechanically motivated two-phase strategy for biped robot upright balance control, in IEEE International Conference on Robotics and Automation (ICRA), Barcelona, 2005, pp. 3707–3713

    Google Scholar 

  29. A.G. Hofmann, M.B. Popovic, H. Herr, Exploiting angular momentum to enhance bipedal center-of-mass control, in IEEE International Conference on Robotics and Automation (ICRA), 2009, pp. 4423–4429

    Google Scholar 

  30. S.-H. Lee, A. Goswami, Ground reaction force control at each foot: A momentum-based humanoid balance controller for non-level and non-stationary ground, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010

    Google Scholar 

  31. S.-H. Lee, A. Goswami, A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robot. 33(4), 399–414 (2012)

    Article  Google Scholar 

  32. H. Herr, M.B. Popovic, Angular momentum in human walking. J. Exp. Biol. 211, 467–481 (2008)

    Article  Google Scholar 

  33. R. Featherstone, D.E. Orin, Dynamics, chapter 2, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin/Heidelberg, 2008)

    Google Scholar 

  34. R. Featherstone, Robot Dynamics Algorithms (Kluwer Academic Publishers, Boston, 1987)

    Book  Google Scholar 

  35. M.B. Popovic, A. Goswami, H. Herr, Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12):1013–1032 (2005)

    Article  Google Scholar 

  36. Manolis Lourakis. levmar: Levenberg-Marquardt nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/~lourakis/levmar/, 2004

  37. P.-B. Wieber, Holonomy and nonholonomy in the dynamics of articulated motion, in Fast Motions in Biomechanics and Robotics, Heidelberg, 2005

    Google Scholar 

  38. S.K. Yun, A. Goswami, Momentum-based reactive stepping controller on level and non-level ground for humanoid robot push recovery, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011

    Google Scholar 

  39. A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal, L. Righetti, Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Auton. Robot. 40(3), 473–491 (2015)

    Article  Google Scholar 

  40. H. Choi, S. Lee, T. Jin, S.-H. Lee, Trajectory-free reactive stepping of humanoid robots using momentum control, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2015

    Google Scholar 

  41. J.-J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs, 1991)

    MATH  Google Scholar 

  42. S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, K. Tanie, A hop towards running humanoid biped, in IEEE International Conference on Robotics and Automation (ICRA), 2004

    Google Scholar 

  43. A. Herzog, N. Rotella, S. Schaal, L. Righetti, Trajectory generation for multi-contact momentum-control, in IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2015

    Google Scholar 

  44. A.G. Hofmann, B.C. Williams, Temporally and spatially flexible plan execution for dynamic hybrid systems. Artif. Intell. 247, 266–294 (2017)

    Article  MathSciNet  Google Scholar 

  45. A.G. Hofmann, B.C. Williams, Exploiting spatial and temporal flexibility for plan execution of hybrid, under-actuated systems, in AAAI, 2006

    Google Scholar 

  46. S.-H. Lee, A. Goswami, Reaction mass pendulum (RMP): an explicit model for centroidal angular momentum of humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 4667–4672

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, SH., Hofmann, A., Goswami, A. (2018). Angular Momentum Based Balance Control. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_40-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_40-2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Angular Momentum Based Balance Control
    Published:
    23 July 2018

    DOI: https://doi.org/10.1007/978-94-007-7194-9_40-2

  2. Original

    Angular Momentum Based Balance Control
    Published:
    25 September 2017

    DOI: https://doi.org/10.1007/978-94-007-7194-9_40-1