Skip to main content

Passivity-Based Control Strategy for Humanoids

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference
  • 404 Accesses

Abstract

This chapter covers passivity-based controls for humanoid robots. Passivity-based control has advantages over general active controls that require a large amount of energy consumption while the amount of energy that they carry is limited. First, passivity-based control is reviewed. Euler-Lagrange systems, examples of which are humanoid robots, and their passivity are described. Analysis on passive bipedal walkers is done based on the impact model for the contacts between the swing leg and the ground. This covers how a Poincaré map can be used in finding stable passive locomotion conditions. The concept of the passive bipedal walker is further expanded to an active control of a humanoid robot in order to give it more adaptability to its changing environment. A passivity-based control that has the adaptability of the ground slop and a simple passivity-based active control that increases the attraction basin of the limit-cycle of locomotion for more robustness are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A.M. Bloch, N.E. Leonard, J.E. Marsden, Stabilization of mechanical systems using controlled Lagrangians, in Proceedings of IEEE International Conference on Decision and Control, 1997, pp. 2356–2361

    Google Scholar 

  2. A.M. Bloch, J.E. Marsden, G.S. de Alvarez, Feedback stabilization of mechanical systems with symmetry, in Current and Future Directions in Applied Mathematics, ed. by M. Alber, B. Hu, J. Rosenthal (Birkhäuser, Boston, 1997), pp. 43–64

    Chapter  Google Scholar 

  3. A.M. Bloch, N.E. Leonard, J.E. Marsden, Matching and stabilization by the method of controlled Lagrangians, in Proceedings of IEEE International Conference on Decision and Control, 1998, pp. 1446–1451

    Google Scholar 

  4. M.J. Coleman, A. Ruina, An uncontrolled walking toy that cannot stand still. Phys. Rev. Lett. 80(16), 3658–3661 (1998)

    Article  Google Scholar 

  5. S. Collins, A. Ruina, R. Tedrake, M. Wisse, Efficient bipedal robots based on passivity-dynamic walkers. Science 307(5712), 1082–1085 (2005)

    Article  Google Scholar 

  6. M. Garcia, A. Chatterjee, A. Ruina, M. Coleman, The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. 120(2), 281–288 (1998)

    Article  Google Scholar 

  7. A. Goswami, B. Thuilot, B. Espiau, A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998)

    Article  Google Scholar 

  8. J. Hamberg, General matching conditions in the theory of controlled Lagrangians, in Proceedings of IEEE International Conference on Decision and Control, 1999, pp. 2519–2523

    Google Scholar 

  9. J.K. Holm, Gait Regulation for Bipedal Locomotion. PhD thesis, University of Illinois at Urbana-Champaign, 2005

    Google Scholar 

  10. T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  11. T. McGeer, Passive dynamic biped catalogue, 1991, in International Symposium on Experimental Robotics, 1992, pp. 465–490

    Google Scholar 

  12. T. McGeer, Dynamics and control of bipedal locomotion. J. Theor. Biol. 163(3), 277–314 (1993)

    Article  Google Scholar 

  13. R. Ortega, A. LorĂ­a, P.J. Niklasson, H. Sira-RamĂ­rez, Passivity-Based Control of Euler-Lagrange Systems (Springer, London, 1998)

    Book  Google Scholar 

  14. L. Perko, Differential Equations and Dynamical Systems (Springer, New York, 2001)

    Book  MATH  Google Scholar 

  15. A.L. Schwab, M. Wisse, Basin of attraction of the simplest walking model, in Proceedings of ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2001, pp. 1–8

    Google Scholar 

  16. M.W. Spong, Passivity based control of the compass gait biped, in Proceedings of IFAC World Congress, 1999, pp. 19–24

    Google Scholar 

  17. M.W. Spong, F. Bullo, Controlled symmetries and passive walking. IEEE Trans. Autom. Control 50(7), 1025–1031 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.W. Spong, J.K. Holm, D. Lee, Passive dynamic walking model with upper body. IEEE Robot. Autom. Mag. 14(2), 30–40 (2007)

    Article  Google Scholar 

  19. R. Tedrake, T.W. Zhang, M. fai Fong, H.S. Seung, Actuating a simple 3D passive dynamic walker, in Proceedings of IEEE International Conference on Robotics and Automation, 2004, pp. 4656–4661

    Google Scholar 

  20. Q. Wang, Y. Huang, L. Wang, Passive dynamic walking with flat feet and ankle compliance. Robotica 28(3), 413–425 (2010)

    Article  Google Scholar 

  21. Q. Wang, Y. Huang, J. Zhu, B. Chen, L. Wang, Dynamic walking on uneven terrains with passivity-based bipedal robots, in Informatics in Control Automation and Robotics, ed. by J.A Cetto, J. Filipe, J.-L. Ferrier (Springer, Berlin/Heidelberg, 2011), pp. 187–199

    Chapter  Google Scholar 

  22. M. Wisse, A.L. Schwab, F.C.T. van der Helm, Passive dynamic walking model with upper body. Robotica 22(6), 681–688 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hyeon Park .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Notation

Let’s define some short notations for scalar and vector differentials with respect to a vector. Since some use different definitions, (Here, dp(q)/dq with \(p(\cdot )\in \mathbb {R}\) and \(q\in \mathbb {R}^n\) denotes a column vector, while some others may use it to denote rather a row vector.) it is necessary to clearly define the one used here.

For a function of q, h(q), where \(q=\begin {bmatrix}q_1(t) & q_2(t) & \cdots & q_n(t)\end {bmatrix}^T\in \mathbb {R}^n\),

$$\displaystyle \begin{aligned} \dfrac{d h}{d q}\stackrel{\Delta}{=} \begin{bmatrix}\dfrac{\partial{h}}{\partial{q_1}} & \dfrac{\partial{h}}{\partial{q_2}}& \cdots & \dfrac{\partial{h}}{\partial{q_n}} \end{bmatrix}^T \in\mathbb{R}^n, \end{aligned} $$
(39)

is defined as a column vector and thus identical to the gradient of h w.r.t. q, ∇h.

Therefore, the derivative of h(q(t)) w.r.t. the time becomes

$$\displaystyle \begin{aligned} \dot{h}=\left( \dfrac{d h}{d q} \right)^T\dot{q}, \end{aligned} $$
(40)

which is simply a chain rule.

For a vector of functions, \(f=\begin {bmatrix} f_1(q) & f_2(q)& \cdots & f_m(q)\end {bmatrix}^T\in \mathbb {R}^m\) where f i (q)(1 ≤ i ≤ m) is a (scalar) function of \(q\in \mathbb {R}^n\), let’s define the following:

$$\displaystyle \begin{aligned} \dfrac{d f}{d {q}}\stackrel{\Delta}{=} \begin{bmatrix} {\partial{f_1}}/{\partial{q_1}} & {\partial{f_1}}/{\partial{q_2}} & \cdots & {\partial{f_1}}/{\partial{q_n}}\\ {\partial{f_2}}/{\partial{q_1}} & {\partial{f_2}}/{\partial{q_2}} & \cdots & {\partial{f_2}}/{\partial{q_n}}\\ \vdots & \vdots & & \vdots \\ {\partial{f_m}}/{\partial{q_1}} & {\partial{f_m}}/{\partial{q_2}} & \cdots & {\partial{f_m}}/{\partial{q_n}} \end{bmatrix}\in\mathbb{R}^{m\times n}, \end{aligned} $$
(41)

which is called Jacobian. Thus,

$$\displaystyle \begin{aligned}\left( \dfrac{df}{dq}\right)_{ij}=\dfrac{\partial{f_i}}{\partial{q_j}}.\end{aligned}$$

1.2 Humanoid Dynamics

For Lagrangian \(\mathcal {L}\) defined in Eq. (3),

$$\displaystyle \begin{aligned} \dfrac{\partial{\mathcal{L}}}{\partial{\dot{q}}}=M(q)\dot{q}, \end{aligned} $$
(42)

and thus

$$\displaystyle \begin{aligned} \dfrac{d}{dt}\left( \dfrac{\partial{\mathcal{L}}}{\partial{\dot{q}}} \right)=\dfrac{d}{dt}\left({M}(q)\right) \dot{q}+M(q)\ddot{q}. \end{aligned} $$
(43)

By the way,

$$\displaystyle \begin{aligned} \dfrac{d}{dt}\left({M}(q)\right)\dot{q}&= \left[\sum_{i=1}^n \dfrac{\partial}{\partial{q_i}}M(q) \dot{q}_i \right] \dot{q}\\ &=\sum_{i=1}^n \dfrac{\partial}{\partial{q_i}}M(q) \dot{q} \dot{q}_i \\ &=\begin{bmatrix} \dfrac{\partial{\left( M(q)\dot{q} \right)}}{\partial{q_1}} & \dfrac{\partial{\left( M(q)\dot{q} \right)}}{\partial{q_2}} & \cdots & \dfrac{\partial{\left( M(q)\dot{q} \right)}}{\partial{q_n}} \end{bmatrix} \begin{bmatrix}\dot{q}_1 \\ \dot{q}_2 \\ \vdots \\ \dot{q}_n\end{bmatrix}\\ &= \left( \dfrac{\partial{\left( M(q)\dot{q} \right)}}{\partial{q}} \right)^T \dot{q} {}. \end{aligned} $$
(44)

And,

$$\displaystyle \begin{aligned} \dfrac{\partial\mathcal{L}}{\partial{q}}=\dfrac{1}{2} \dfrac{\partial}{\partial{q}}\left[ \dot{q}^TM(q)\dot{q}\right]-\dfrac{\partial{V}}{\partial{q}}. \end{aligned} $$
(45)

Therefore, Lagrangian equation of motion , Eq. (2), becomes

$$\displaystyle \begin{aligned} M(q)\ddot{q}+\dfrac{d}{dt}\left( M(q)\right)\dot{q}-\dfrac{1}{2}\dfrac{\partial}{\partial{q}}\left[ \dot{q}^TM(q)\dot{q}\right]+\dfrac{\partial{V}}{\partial{q}}=\Xi_q \end{aligned} $$
(46)

Since Lagrangian equation of motion can be also expressed by

$$\displaystyle \begin{aligned} M(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=\Xi_q, \end{aligned} $$
(47)
$$\displaystyle \begin{aligned} C(q,\dot{q})\dot{q}&= \dfrac{d}{dt}\left( M(q)\right)\dot{q}-\dfrac{1}{2}\dfrac{\partial}{\partial{q}}\left[ \dot{q}^TM(q)\dot{q}\right]\\ &= \left( \dfrac{\partial{\left( M(q)\dot{q} \right)}}{\partial{q}} \right)^T \dot{q} -\dfrac{1}{2}\dfrac{\partial}{\partial{q}}\left[ \dot{q}^TM(q)\dot{q}\right], \end{aligned} $$

where Eq. (44) is used.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Park, J.H. (2017). Passivity-Based Control Strategy for Humanoids. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_149-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_149-1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics