Skip to main content

Assistive Humanoid Robots for the Elderly with Mild Cognitive Impairment

  • Living reference work entry
  • First Online:
Humanoid Robotics: A Reference

Abstract

There is a growing need worldwide in new technologies to assist elderly individuals in their daily lives, especially those that suffer from mild cognitive impairment (MCI). Autonomous robots have been suggested and already tested for this task in multiple contexts, such as hospitals and retirement homes. Humanoid robots, with their advanced sensing and motor capabilities, are well suited for this task, especially considering that they are usually designed to perform in human-scale environments. This chapter presents various humanoid research works and projects that have been conducted with humanoid robots and elderly individuals, along with assistive technologies that could be used with humanoid robots and the challenges that remain ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. United Nations, Department of Economic and Social Affairs, Population Division, World Population Ageing (2015). https://doi.org/10.1186/1471-2318-14-112

  2. C. Siegel, A. Hochgatterer, T.E. Dorner, Contributions of ambient assisted living for health and quality of life in the elderly and care services – a qualitative analysis from the experts’ perspective of care service professionals. BMC Geriatr. 14, 112 (2014)

    Article  Google Scholar 

  3. A. Collie, P. Maruff, The neuropsychology of preclinical Alzheimer’s disease and mild cognitive impairment. Neurosci. Biobehav. Rev. 24, 365–374 (2000)

    Article  Google Scholar 

  4. K. Ritchie, J. Touchon, Mild cognitive impairment: conceptual basis and current nosological status. Lancet 355, 225 (2000)

    Article  Google Scholar 

  5. R.C. Petersen, G.E. Smith, S.C. Waring, R.J. Ivnik, E.G. Tangalos, E. Kokmen, Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999)

    Article  Google Scholar 

  6. T. Mukai, S. Hirano, H. Nakashima, Y. Kato, Y. Sakaida, S. Guo, S. Hosoe, Development of a nursing-care assistant robot RIBA that can lift a human in its arms, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Taipei, 2010), pp. 5996–6001

    Google Scholar 

  7. J. Ding, Y.J. Lim, M. Solano, K. Shadle, C. Park, C. Lin, J. Hu, Giving patients a lift – the robotic nursing assistant (RoNA), in 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (IEEE, Woburn, 2014), pp. 1–5

    Google Scholar 

  8. M.M. Williamson, Series Elastic Actuators (Cambridge/Boston, Massachusetts Institute of Technology, 1995)

    Google Scholar 

  9. R. Ranasinghe, L. Dantanarayana, A. Tran, S. Lie, M. Behrens, L. Liu, Smart hoist: an assistive robot to aid carers, in 2014 13th International Conference on Control Automation Robotics Vision (ICARCV) (IEEE, Singapore, 2014), pp. 1285–1291

    Google Scholar 

  10. Toyota. Toyota Global Site | Care Assist Robot Technical Presentation [Online]. Toyota Mot. Corp. Glob. (2011). Website: http://www.toyota-global.com/innovation/partner_robot/technical_presentation/index.html [8 Dec. 2016]

  11. S. Egawa, I. Takeuchi, A. Koseki, T. Ishii, Electrically assisted walker with supporter-embedded force-sensing device, in Advances in Rehabilitation Robotics (Springer, Berlin/Heidelberg, 2004), pp. 313–322

    Google Scholar 

  12. D. Fontanelli, A. Giannitrapani, L. Palopoli, D. Prattichizzo, A passive guidance system for a robotic walking assistant using brakes, in 2015 54th IEEE Conference on Decision and Control (CDC) (2015), pp. 829–834

    Google Scholar 

  13. A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J.T. Matthews, J. Dunbar-Jacob, S. Thrun, A robotic walker that provides guidance, in Proceedings of the IEEE International Conference on Robotics and Automation, (IEEE, Taipei, 2003), pp. 25–30

    Google Scholar 

  14. W.H. Mou, M.F. Chang, C.K. Liao, Y.H. Hsu, S.H. Tseng, L.C. Fu, Context-aware assisted interactive robotic walker for Parkinson’s disease patients, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IEEE, Vilamoura, 2012), pp. 329–334

    Google Scholar 

  15. A.M. Sabatini, V. Genovese, E. Pacchierotti, A mobility aid for the support to walking and object transportation of people with motor impairments, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IEEE, Lausanne, 2002), pp. 1349–1354

    Google Scholar 

  16. H.M. Shim, E.H. Lee, J.H. Shim, S.M. Lee, S.H. Hong, Implementation of an intelligent walking assistant robot for the elderly in outdoor environment, in Proceedings International Conference on Rehabilitation Robotics (IEEE, Chicago, 2005), pp. 452–455

    Google Scholar 

  17. K.T. Yu, C.P. Lam, M.F. Chang, W.H. Mou, S.H. Tseng, L.C. Fu, An interactive robotic walker for assisting elderly mobility in senior care unit, in IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO) (IEEE, Seoul, 2010)

    Google Scholar 

  18. J. Frémy, F. Ferland, M. Lauria, F. Michaud, Force-guidance of a compliant omnidirectional non-holonomic platform. Robot. Auton. Syst. 62, 579–590 (2014)

    Article  Google Scholar 

  19. F. Ferland, A. Aumont, D. Létourneau, M. A. Legault, F. Michaud, Johnny-0, a compliant, force-controlled and interactive humanoid autonomous robot, in Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, Boston, 2012, pp. 417–418

    Google Scholar 

  20. Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. Lim, A. Takanishi, Development of a new humanoid robot WABIAN-2, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (IEEE, Orlando, 2006), pp. 76–81

    Google Scholar 

  21. P. Rashidi, A. Mihailidis, A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17, 579–590 (2013)

    Article  Google Scholar 

  22. B. Graf, C. Parlitz, M. Hägele, Robotic home assistant Care-O-bot® 3 product vision and innovation platform, in Proceedings of the IEEE Workshop on Advanced Robotics and Its Social Impacts (IEEE, Tokyo, 2009), pp. 139–144. http://dx.doi.org/10.1109/ARSO.2009.5587059

  23. T. Taipalus, K. Kosuge, Development of service robot for fetching objects in home environment, in 2005 International Symposium on Computational Intelligence in Robotics and Automation (IEEE, Espoo, 2005), pp. 451–456

    Google Scholar 

  24. A. Reveleau, F. Ferland, M. Labbé, D. Létourneau, F. Michaud, Visual representation of interaction force and sound source in a teleoperation user interface for a mobile robot. J. Hum. Robot. Interact. 4, 1–23 (2015)

    Article  Google Scholar 

  25. A. Tapus, C. Tapus, M.J. Mataric, The use of socially assistive robots in the design of intelligent cognitive therapies for people with dementia, in 2009 IEEE International Conference on Rehabilitation Robotics (IEEE, Kyoto, 2009), pp. 924–929

    Google Scholar 

  26. F. Martín, C. Agüero, J.M. Cañas, G. Abella, R. Benítez, S. Rivero, M. Valenti, P. Martínez-Martín, Robots in therapy for dementia patients. J. Phys. Agents 7, 48–55 (2013)

    Google Scholar 

  27. D. Fischinger, P. Einramhof, W. Wohlkinger, K. Papoutsakis, P. Mayer, P. Panek, T. Koertner, S. Hoffmann, A. Argyros, M. Vincze, C. Gisinger, A. Weiss, Hobbit – the mutual care robot, in Workshop Proceedings of ASROB in Conjunction with IROS 2013, Tokyo, 2013

    Google Scholar 

  28. O. Faust, U. Rajendra Acharya, E.Y.K. Ng, T.J. Hong, W. Yu, Application of infrared thermography in computer aided diagnosis. Infrared Phys. Technol. 66, 160–175 (2014)

    Article  Google Scholar 

  29. J.T. Cacioppo, L.G. Tassinary, Inferring psychological significance from physiological signals. Am. Psychol. 45, 16 (1990)

    Article  Google Scholar 

  30. D. Keltner, P. Ekman, Facial expression of emotion, in Handbook of Emotions, ed. by M. Lewis, J. K. Haviland-Jones (Guilford Publications, New York, 2000), pp. 236–249

    Google Scholar 

  31. K.H. Kim, S. Bang, S. Kim, Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42, 419–427 (2004)

    Article  Google Scholar 

  32. P. Philippot, R.S. Feldman, others, The Regulation of Emotion (Erlbaum, Mahwah, 2004)

    Google Scholar 

  33. S. Ioannou, P. Morris, H. Mercer, M. Baker, V. Gallese, V. Reddy, Proximity and gaze influences facial temperature: a thermal infrared imaging study. Front. Psychol. 5, 845 (2014)

    Article  Google Scholar 

  34. S. Ioannou, V. Gallese, A. Merla, Thermal infrared imaging in psychophysiology: potentialities and limits. Psychophysiology 51, 951–963 (2014)

    Article  Google Scholar 

  35. P.M. Suter, R. Maire, D. Holtz, W. Vetter, Relationship between self-perceived stress and blood pressure. J. Hum. Hypertens. 11, 171–176 (1997)

    Article  Google Scholar 

  36. M. Sorostinean, F. Ferland, A. Tapus, Reliable stress measurement using face temperature variation with a thermal camera in human-robot interaction [Online], in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (IEEE, 2016), pp. 14–19. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7363516 [9 Dec.2016].

  37. V. Magnanimo, M. Saveriano, S. Rossi, D. Lee, A Bayesian approach for task recognition and future human activity prediction, in The 23rd IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (IEEE, Edimburgh, 2014), pp. 726–731

    Google Scholar 

  38. S. Iengo, S. Rossi, M. Staffa, A. Finzi. Continuous gesture recognition for flexible human-robot interaction, in IEEE International Conference on Robotics and Automation, ICRA Hong Kong, 31 May–7 June 2014 (IEEE, Hong Kong, 2014), pp. 4863–4868

    Google Scholar 

  39. H.S. Koppula, R. Gupta, A. Saxena, Learning human activities and object affordances from RGB-D videos. Int. J. Robot. Res. 32, 951–970 (2013)

    Article  Google Scholar 

  40. T. Kleinberger, M. Becker, E. Ras, A. Holzinger, P. Müller, Ambient intelligence in assisted living: enable elderly people to handle future interfaces, in Universal Access in Human-Computer Interaction. Ambient Interaction. International Conference on Universal Access in Human-Computer Interaction (Springer, Berlin/Heidelberg), pp. 103–112

    Google Scholar 

  41. P. Mayer, P. Panek, A social assistive robot in an intelligent environment. Biomed. Tech. (Berl) (2013). doi:10.1515/bmt-2013-4240

  42. S. Coradeschi et al., GiraffPlus: A system for monitoring activities and physiological parameters and promoting social interaction for elderly. Hum. Comput. Syst. Interact. Backgr. Appl. 3 Adv. Intell. Syst. Comput. 300, 261–271 (2014)

    Google Scholar 

  43. M. Tanaka, A. Ishii, et al., Effect of a human-type communication robot on cognitive function in elderly women living alone. Med. Sci. Monit. 18, CR550 (2012)

    Google Scholar 

  44. F. Ferland, F. Leconte, A. Tapus, F. Michaud, An architecture with integrated episodic memory for adaptive robot behavior, in 2014 AAAI Fall Symposium Series (AAAI, Arlington, 2014)

    Google Scholar 

  45. M. Georgeff, B. Pell, M. Pollack, M. Tambe, M. Wooldridge, The belief-desire-intention model of agency, in International Workshop on Agent Theories, Architectures, and Languages. Lecture Notes in Computer Science, vol. 1555 (Springer, Berlin/Heidelberg, 1998), pp. 1–10

    Google Scholar 

  46. F. Leconte, F. Ferland, F. Michaud, Design and integration of a spatio-temporal memory with emotional influences to categorize and recall the experiences of an autonomous mobile robot. Auton. Robot. 40, 831–848 (2016)

    Article  Google Scholar 

  47. F. Ferland, F. Michaud, Selective attention by perceptual filtering in a robot control architecture. IEEE Trans. Cogn. Dev. Syst. 8(4), 256–270

    Google Scholar 

  48. F. Ferland, A. Cruz-Maya, A. Tapus, Adapting an hybrid behavior-based architecture with episodic memory to different humanoid robots, in 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (IEEE, Kobe, 2015), pp. 797–802

    Google Scholar 

  49. M. Heerink, B. Kröse, V. Evers, B. Wielinga, Assessing acceptance of assistive social agent technology by older adults: the almere model. Int. J. Soc. Robot. 2, 361–375 (2010)

    Article  Google Scholar 

  50. M. Heerink, How elderly users of a socially interactive robot experience adaptiveness, adaptability and user control, in IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), 2011 IEEE 12th International Symposium on. IEEE (IEEE, Budapest, 2011), pp. 79–84

    Google Scholar 

  51. E. T. Hall, The Hidden Dimension (Doubleday, New York, 1966)

    Google Scholar 

  52. N. Dael, N. Bianchi-Berthouze, A. Kleinsmith, C. Mohr, Measuring body movement: current and future directions in proxemics and kinesics, in APA Handbook of Nonverbal Communication, ed. by D. Matsumoto, H. C. Hwang, M. G. Frank (American Psychological Association, Washington, DC, 2016), pp. 551–587

    Google Scholar 

  53. D. Matsumoto, H. C. Hwang, M. G. Frank, The body: postures, gait, proxemics, and haptics, in APA Handbook of Nonverbal Communication, ed. by D. Matsumoto, H. C. Hwang, M. G. Frank (American Psychological Association, Washington, DC, 2016), pp. 387–400

    Google Scholar 

  54. R. Mead, M. J. Matarić, Perceptual models of human-robot proxemics, in Experimental Robotics: The 14th International Symposium on Experimental Robotics, ed. by M. A. Hsieh, O. Khatib, V. Kumar (Springer International Publishing, Cham, 2016), pp. 261–276

    Google Scholar 

  55. R. Agrigoroaie, F. Ferland, A. Tapus, The ENRICHME project: lessons learnt from a first interaction with the elderly, in International Conference on Social Robotics. Lecture Notes in Computer Science, vol. 9979 (Springer, Cham, 2016), pp. 735–745

    Google Scholar 

  56. C. Dondrup, N. Bellotto, Jovan F., M. Hanheide, Real-time multisensor people tracking for human-robot spatial interaction, in Workshop on Machine Learning for Social Robotics at International Conference on Robotics and Automation – ICRA, 2015

    Google Scholar 

  57. A. Cruz-Maya, A. Tapus, Teaching nutrition and healthy eating by using multimedia with a Kompai Robot: effects of stress and user’s personality, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (IEEE, Cancun, 2016)

    Google Scholar 

  58. P. Ekman, W.V. Friesen, Facial Action Coding System (Consulting Psychologists Press, Palo Alto, 1978)

    Google Scholar 

  59. L.R. Goldberg, An alternative“ description of personality”: the big-five factor structure. J. Pers. Soc. Psychol. 59, 1216 (1990)

    Article  Google Scholar 

  60. P. Ekman, W.V. Friesen, J.C. Hager, Facial Action Coding System, Investigator’s Guide, 2nd edn. (Weidenfeld & Nicolson, London, 2002)

    Google Scholar 

  61. D. Leidner, A. Dietrich, M. Beetz, A. Albu-Schäffer, Knowledge-enabled parameterization of whole-body control strategies for compliant service robots. Auton. Robot. 40, 519–536 (2016)

    Article  Google Scholar 

  62. L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robot. 2, 505–518 (2005)

    Article  Google Scholar 

  63. K. Dautenhahn, S. Woods, C. Kaouri, M.L. Walters, K.L. Koay, I. Werry, What is a robot companion – friend, assistant or butler?, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Edmonton, 2005), pp. 1192–1197

    Google Scholar 

  64. D. Li, P.L.P. Rau, Y. Li, A cross-cultural study: effect of robot appearance and task. Int. J. Soc. Robot. 2, 175–186 (2010)

    Article  Google Scholar 

  65. F. Ferland, D. Létourneau, A. Aumont, J. Frémy, M.-A. Legault, M. Lauria, F. Michaud, Natural interaction design of a humanoid robot. J. Hum. Robot. Interact. Spec. Issue HRI Perspect. Proj. Globe 1, 14–29 (2012)

    Google Scholar 

  66. M.K. Lee, J. Forlizzi, P.E. Rybski, F. Crabbe, W. Chung, J. Finkle, E. Claser, S. Kiesler, The Snackbot: documenting the design of a robot for long-term human-robot interaction, in Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction (ACM, New York, 2009)

    Google Scholar 

  67. H.G. Nelson, E. Stolterman, The Design Way (Educational Technology Publication, Englewood Cliffs, 2003)

    Google Scholar 

  68. J. Fasola, M. Mataric, A socially assistive robot exercise coach for the elderly. J. Hum. Robot. Interact. 2, 3–32 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Ferland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this entry

Cite this entry

Ferland, F., Agrigoroaie, R., Tapus, A. (2017). Assistive Humanoid Robots for the Elderly with Mild Cognitive Impairment. In: Goswami, A., Vadakkepat, P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7194-9_134-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7194-9_134-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7194-9

  • Online ISBN: 978-94-007-7194-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics