Advertisement

Johnnie and Lola – the TUM bipeds

  • Thomas Buschmann
  • Michael Gienger
Living reference work entry

Latest version View entry history

Abstract

The robots Johnnie and Lola were developed at the Institute of Applied Mechanics at the Technische Universität München (TUM) to research hardware design, dynamics, and control aspects of biped walking. Starting in 1998, biped walking research at the lab has been an active research area for almost 20 years. The development of both robots followed an iterative, model-driven approach, and both robots heavily rely on model-based control methods, an approach that was combined with a strong emphasis on an experimental investigation of the walking systems. Both robots feature innovative hardware designs and novel control algorithms and were used to achieve advances both in dynamic walking control and autonomous locomotion among obstacles.

Keywords

Walking control Hardware design Gait generation Collision avoidance 

References

  1. 1.
    T. Buschmann, Simulation and control of biped walking robots. Ph.D. thesis, Technische Universität München, 2010Google Scholar
  2. 2.
    T. Buschmann, A. Ewald, H. Ulbrich, A. Buschges, Event-based walking control – from neurobiology to biped robots, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012, pp. 1793–1800Google Scholar
  3. 3.
    T. Buschmann, V. Favot, S. Lohmeier, M. Schwienbacher, H. Ulbrich, Experiments in fast biped walking, in Proceedings of IEEE International Conference on Mechatronics (ICM), 2011, pp. 863–868Google Scholar
  4. 4.
    T. Buschmann, S. Lohmeier, M. Bachmayer, H. Ulbrich, F. Pfeiffer, A collocation method for real-time walking pattern generation, in Proceedings of IEEE-RAS International Conference on Humanoid Robotics (Humanoids), 2007, pp. 1–6Google Scholar
  5. 5.
    T. Buschmann, S. Lohmeier, H. Ulbrich, Biped walking control based on hybrid position/force control, in Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), 2009, pp. 3019–3024Google Scholar
  6. 6.
    T. Buschmann, R. Wittmann, M. Schwienbacher, H. Ulbrich, A method for real-time kineto-dynamic trajectory generation, in Proceedings of IEEE-RAS International Conference on Humanoid Robotics (Humanoids), 2012, pp. 190–197Google Scholar
  7. 7.
    R. Cupec, G. Schmidt, O. Lorch, Experiments in vision-guided robot walking in a structured scenario, in Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2005, vol. 4, 2005, pp. 1581–1586Google Scholar
  8. 8.
    M. Gienger, Entwurf und Realisierung einer zweibeinigen Laufmaschine. Fortschritt-Berichte VDI: Reihe 1, Konstruktionstechnik, Maschinenelemente (VDI-Verlag, 2005)Google Scholar
  9. 9.
    M. Gienger, K. Löffler, F. Pfeiffer, A biped robot that jogs, in Proceedings of IEEE International Conference Robotics and Automation (ICRA) (IEEE, 2000), pp. 3334–3339Google Scholar
  10. 10.
    M. Gienger, K. Löffler, F. Pfeiffer, Towards the design of a jogging robot, in Proceedings of IEEE International Conference Robotics and Automation (ICRA) (IEEE, 2001), pp. 4140–4145Google Scholar
  11. 11.
    M. Gienger, K. Löffler, F. Pfeiffer, Design and Realization of Jogging Johnnie, in Romansy 14, ed. by G. Bianchi, J.-C. Guinot, C. Rzymkowski. Volume 438 of International Centre for Mechanical Sciences (Springer, Vienna, 2002), pp. 445–452Google Scholar
  12. 12.
    M. Gienger, K. Löffler, F. Pfeiffer, Walking control based on inertial measurement, in Proceedings of the International Workshop on Humanoid and Humanfriendly Robotics (IARP), Tsukuba ,2002Google Scholar
  13. 13.
    A.-C. Hildebrandt, R. Wittmann, D. Wahrmann, D. Rixen, T. Buschmann, Real-time pattern generation among obstacles for biped robots, in Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), 2015Google Scholar
  14. 14.
    K. Löffler, Dynamik und Regelung einer zweibeinigen Laufmaschine. Fortschritt-Berichte VDI: Reihe 8, Meß-, Steuerungs- und Regelungstechnik (VDI-Verlag, 2006)Google Scholar
  15. 15.
    K. Löffler, M. Gienger, F. Pfeiffer, Control of a biped jogging robot, in Proceedings of 6th International Workshop on Advanced Motion Control (IEEE, 2000), pp. 601–605Google Scholar
  16. 16.
    K. Löffler, M. Gienger, F. Pfeiffer, Sensor and control design of a dynamically stable biped robot, in Proceedings of IEEE International Conference Robotics and Automation (ICRA), 2003Google Scholar
  17. 17.
    K. Löffler, M. Gienger, F. Pfeiffer, Sensors and control concept of walking Johnnie. Int. J. Robot. Res. 22(3–4), 229–239 (2003)Google Scholar
  18. 18.
    K. Löffler, M. Gienger, F. Pfeiffer, H. Ulbrich, Sensors and control concept of a biped robot. IEEE Trans. Indus. Electron. 51(5), 972–980 (2004)Google Scholar
  19. 19.
    S. Lohmeier, Design and realization of a performance enhanced humanoid robot. Ph.D. thesis, Technische Universität München, 2010Google Scholar
  20. 20.
    S. Lohmeier, T. Buschmann, M. Schwienbacher, H. Ulbrich, F. Pfeiffer, Leg design for a humanoid walking robot, in Proceedings of IEEE-RAS International Conference on Humanoid Robotics (Humanoids), 2006, pp. 536–541Google Scholar
  21. 21.
    S. Lohmeier, T. Buschmann, H. Ulbrich, System design and control of anthropomorphic walking robot LOLA. IEEE/ASME Trans. Mechatron. 14(6), 658–666 (2009)Google Scholar
  22. 22.
    S. Lohmeier, K. Löffler, M. Gienger, H. Ulbrich, F. Pfeiffer, Computer system and control of biped Johnnie, in Proceedings of IEEE International Conference Robotics and Automation (ICRA), 2004, pp. 4222–4227Google Scholar
  23. 23.
    S. Lohmeier, K. Löffler, M. Gienger, H. Ulbrich, F. Pfeiffer, Sensor system and trajectory control of a biped robot, in The 8th IEEE International Workshop on Advanced Motion Control, AMC’04, 2004, pp. 393–398Google Scholar
  24. 24.
    F. Pfeiffer, The TUM walking machines. Philos. Trans. R. Soc. A 14(365), 109–131 (2007)Google Scholar
  25. 25.
    F. Pfeiffer, Mechanical System Dynamics. Lecture Notes in Applied and Computational Mechanics (Springer, Dordrecht, 2008)Google Scholar
  26. 26.
    F. Pfeiffer, K. Löffler, M. Gienger, Sensors and control aspects of biped robot Johnnie. Int. J. Humanoid Rob. (IJHR) 1(3), 481–496 (2004)Google Scholar
  27. 27.
    F. Pfeiffer, T. Rossmann, J. Steuer, Theory and practice of machine walking, in Human and Machine Locomotion, ed. by A. Morecki, K.J. Waldron. Volume 375 of International Centre for Mechanical Sciences (Springer, Vienna, 1997), pp. 231–281Google Scholar
  28. 28.
    M. Schwienbacher, T. Buschmann, S. Lohmeier, V. Favot, H. Ulbrich, Self-collision avoidance and angular momentum compensation for a biped humanoid robot, in Proceedings of IEEE International Conference Robotics and Automation (ICRA), 2011, pp. 581–586Google Scholar
  29. 29.
    M. Schwienbacher, T. Buschmann, H. Ulbrich, Vertical angular momemtum minimization for biped robots with kinematically redundant joints, in 23rd International Conference on Theoretical and Applied Mechanics (ICTAM), 2012Google Scholar
  30. 30.
    J.F. Seara, G. Schmidt, Intelligent gaze control for vision-guided humanoid walking: methodological aspects. Robot. Auton. Syst. 48(4), 231–248 (2004)Google Scholar
  31. 31.
    J. Vucobratovic, B. Borovac, D. Surla, D. Stokic, Biped Locomotion: Dynamics, Stability, Control and Applications. Fortschritt-Berichte VDI: Reihe 8, Meß-, Steuerungs- und Regelungstechnik (Springer, Berlin, 1990)Google Scholar
  32. 32.
    R. Wittmann, A.-C. Hildebrandt, D. Wahrmann, D. Rixen, T. Buschmann, Real–time nonlinear model predictive footstep optimization for biped robots, in Proceedings of IEEE-RAS International Conference on Humanoid Robotics (Humanoids), 2015Google Scholar
  33. 33.
    R. Wittmann, A.-C. Hildebrandt, D. Wahrmann, D. Rixen, T. Buschmann, State estimation for biped robots using multibody dynamics, in Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems (IROS), 2015Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.Institute of Applied MechanicsTechnische Universität MünchenGarchingGermany
  2. 2.Honda Research Institute Europe GmbHOffenbachGermany

Personalised recommendations