Modeling for Design for Values

  • Sjoerd D. ZwartEmail author
Reference work entry


This chapter addresses societal implications of models and modeling in engineering design. The more standard question about well-known technical and epistemic modeling values, such as safety and validity, will be left to the standard literature. The sections “Introduction” and “Values in Modeling: Framing and Standard Views” discuss relevant societal norms and values and the ways in which they are model related. Additionally, standard points of view are discussed about the value-ladenness of models. The section “Value-Related Issues Emerging in Model Building and Use” shows various ways in which engineering models may turn out to have unforeseen societal consequences. An important way to avoid such consequences and deliberately model for values in a positive sense is to take models as special kinds of artifacts. This perspective enables modelers to apply designer methods and techniques and view a modeling problem as in need of an explicit list of design specifications. Doing so, modelers may apply forms of stakeholder analysis and participatory design. Additionally, they may apply well-known, hierarchical means-end techniques to explicate and operationalize the relevant values; doing so, they support discussions about them within and outside the design team. Finally, the model-as-artifact perspective stimulates modelers to produce technical documentation and user guides, which will decrease the negative effects of improper use. The chapter ends with a checklist of issues, which the documentation should cover if a modeling for values is taken seriously.


Model Value-ladenness Instrumental and derivative values Engineering, modeling, and societal and environmental values Accountability Affordance Model as artifact Modeling practices Participatory design, value identification, and implementation Value hierarchy Model documentation 



This chapter draws on and elaborates Zwart et al. (2013) and Diekmann Zwart (2013). Moreover, it presents part of Van de Poel (2013) as starting point for the operationalization of societal values in engineering design. Finally, the author wants to thank Sven Diekmann and the editors of the present volume for their comments on the outline and contents of this chapter.


  1. ABET, Accreditation Board for Engineering and Technology, Inc (1988) Annual report for the year ending September 30, 1998, New YorkGoogle Scholar
  2. Adams D (2009) Mostly harmless. Pan Macmillan, LondonGoogle Scholar
  3. Barlas Y (1996) Formal aspects of model validity and validation in system dynamics. Syst Dyn Rev 12(3):183–210. doi:10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4CrossRefGoogle Scholar
  4. Baumgartner F, Baun TM (2005) Engineering documentation. In: Whitaker JC (ed) The electronics handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  5. Bijker WE (1995) Democratisering van de technologische cultuur. Schrijen-Lippertz, VoerendaalGoogle Scholar
  6. Blair M, Obenski S, Bridickas P (1992) GAO/IMTEC-92-26 Patriot missile software problem. Retrieved from
  7. Bucciarelli LL (1994) Designing engineers. MIT Press, Cambridge, LondonGoogle Scholar
  8. Bucciarelli L, Kroes P (2014) Values in engineering. In: Soler L, Zwart S, Lynch M, Israel-Jost V (eds) Science after the practice turn in the philosophy, history, and social studies of science. Routledge, NewYork/Londen, pp 188–199Google Scholar
  9. Buchanan R (1992) Wicked problems in design thinking. Des Issues 8(2):5–21. doi:10.2307/1511637CrossRefGoogle Scholar
  10. Cranor CF (1990) Some moral issues in risk assessment. Ethics 101(1):123–143. doi:10.2307/2381895CrossRefGoogle Scholar
  11. Cross N (2008) Engineering design methods: strategies for product design. Wiley, Chichester/HobokenGoogle Scholar
  12. Diekmann S, Zwart SD (2013) Modeling for fairness: a rawlsian approach. Stud Hist Philos Sci A 46:46–53CrossRefGoogle Scholar
  13. Douglas H (2000) Inductive risk and values in science. Philos Sci 67(4):559–579CrossRefGoogle Scholar
  14. Douglas H (2007) Rejecting the ideal of value free science. In: Kincaid H et al (ed) Value-free science?, vol 1. Oxford University Press, New York, pp 120–141CrossRefGoogle Scholar
  15. Downey GL (1998) The machine in me. An anthropologist sits among computer engineers. Routledge, New York/LondonGoogle Scholar
  16. Feenberg A et al (2006) “Replies to critics”, democratizing technology: Andrew Feenberg’s critical theory of technology. In: Veak TJ (ed) Democratizing technology: building on Andrew Feenberg’s critical theory of technology. State University of New York Press, Albany, pp 175–210Google Scholar
  17. Fleischmann KR, Wallace WA (2005) A covenant with transparency: opening the black box of models. Commun ACM 48(5):93–97. doi:10.1145/1060710.1060715CrossRefGoogle Scholar
  18. Fleischmann KR, Wallace WA (2009) Ensuring transparency in computational modeling. Commun ACM 52(3):131–134. doi:10.1145/1467247.1467278CrossRefGoogle Scholar
  19. Frankena WK (1973) Ethics. Prentice-Hall, Englewood CliffsGoogle Scholar
  20. Frigg R, Hartmann S (2012) Models in science. In: Zalta EN (ed) The stanford encyclopedia of philosophy (Fall 2012 edition). The Metaphysics Research Lab Stanford, CA 94305-4115 Stanford.
  21. Gelfert A (2009) Rigorous results, cross-model justification, and the transfer of empirical warrant: the case of many-body models in physics. Synthese 169(3):497–519. doi:10.1007/s11229-008-9431-6CrossRefGoogle Scholar
  22. Geraci A (1991) IEEE Standard Computer Dictionary: Compilation of IEEE Standard Computer Glossaries. (Contributions by F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Radatz, … F. Springsteel). Piscataway, NJ, USA: IEEE PressGoogle Scholar
  23. Gibson JJ (1986) The ecological approach to visual perception. Lawrence Erlbaum, HillsdaleGoogle Scholar
  24. Haimes YY (2005) Risk modeling, assessment, and management, vol 40. Wiley, HobokenGoogle Scholar
  25. Hubka V, Eder WE (1988) Theory of technical systems; a total concept theory for engineering design. Springer, BerlinCrossRefGoogle Scholar
  26. ISO (2006) ISO 11442:2006(E) Technical product documentation – document management. International Organization for Standardization, GenevaGoogle Scholar
  27. Jenkins DG, McCauley LA (2006) GIS, SINKS, FILL, and disappearing wetlands: unintended consequences in algorithm development and use. In: Proceedings of the 2006 ACM symposium on applied computing. ACM, New York, pp 277–282. doi:10.1145/1141277.1141342CrossRefGoogle Scholar
  28. Jones JC (1992) Design methods. Wiley, New YorkGoogle Scholar
  29. Kijowski DJ, Dankowicz H, & Loui MC (2013) Observations on the Responsible Development and Use of Computational Models and Simulations. Science and Engineering Ethics, 19(1):63–81. doi:10.1007/s11948-011-9291-1CrossRefGoogle Scholar
  30. Klaasen I (2005) Modelling reality. In: Jong TMD, Voordt VD (eds) Ways to study and research urban, architectural and technical design. IOS Press/Delft University Press, Delft, pp 181–188Google Scholar
  31. Kleijnen JPC (2001) Ethical issues in modeling: some reflections. Eur J Oper Res 130(1):223–230. doi:10.1016/S0377-2217(00)00024-2CrossRefGoogle Scholar
  32. Le Menestrel M, Van Wassenhove LN (2004) Ethics outside, within, or beyond OR models? Eur J Oper Res 153(2):477–484. doi:10.1016/S0377-2217(03)00168-1CrossRefGoogle Scholar
  33. Mannan S (2005) Lee’s loss prevention in the process industries: hazard identification, assessment, and control. Elsevier Butterworth-Heinemann, BurlingtonGoogle Scholar
  34. McNelis PD (1994) Rhetoric and rigor in macroeconomic models. In: Wallace WA (ed) Ethics in modeling. Pergamon, Oxford/Tarrytown, pp 75–102Google Scholar
  35. Merton RK (1936) The unanticipated consequences of purposive social action. Am Sociol Rev 1(6):894–904. doi:10.2307/2084615CrossRefGoogle Scholar
  36. Morgan MS, Morrison M (1999) Models as mediators: perspectives on natural and social science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Pahl G, Beitz W (1984) Engineering design; a systematic approach. Design Council, LondonGoogle Scholar
  38. Pugh S (1990) Total design; integrated methods for successful product engineering. Addison Wesley, WokinghamGoogle Scholar
  39. Rittel HWJ, Webber MM (1973) Dilemmas in a general theory of planning. Policy Sci 4(2):155–169. doi:10.1007/BF01405730CrossRefGoogle Scholar
  40. Roozenburg NFM, Eekels J (1995) Product design: fundamentals and methods. Wiley, Chichester/New YorkGoogle Scholar
  41. Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecol Model 90(3):229–244. doi:10.1016/0304-3800(95)00152-2CrossRefGoogle Scholar
  42. Sargent RG (2005) Verification and validation of simulation models. In: Proceedings of the 37th conference on winter simulation, Orlando pp 130–143Google Scholar
  43. Schuler D, Namioka A (1993) Participatory design: principles and practices. Lawrence Erlbaum, HillsdaleGoogle Scholar
  44. Selby RG, Vecchio FJ, Collins MP (1997) The failure of an offshore platform. Concrete Int 19(8):28–35Google Scholar
  45. Shelley C (2011) Fairness in technological design. Sci Eng Ethics 18(4):663–680. doi:10.1007/s11948-011-9259-1CrossRefGoogle Scholar
  46. Shruti K, Loui M (2008) Ethical issues in computational modeling and simulation. CincinnatiGoogle Scholar
  47. Siegel, Adam B (2004) “Honest Performance Analysis: a not-always met requirement”. Defense Acquisition Review Journal. Defense Acquisition University Press. January–April, p.101–106Google Scholar
  48. Simon HA (1973) The structure of ill structured problems. Artif Intell 4(3–4):181–201. doi:10.1016/0004-3702(73)90011-8CrossRefGoogle Scholar
  49. van de Poel IR (2009) Values in engineering design. In: Meijers AA (ed) Philosophy of technology and engineering sciences, vol 9. Elsevier/North Holland, Amsterdam/London/Boston, pp 973–1006CrossRefGoogle Scholar
  50. Van de Poel I (2011) The relation between forward-looking and backward-looking responsibility. In: Vincent NA, van de Poel I, Hoven J (eds) Moral responsibility. Springer Netherlands, Dordrecht, pp 37–52CrossRefGoogle Scholar
  51. van de Poel IR (2013) Translating values into design requirements. In: Michelfelder DP, McCarthy N, Goldberg DE (eds) Philosophy and engineering: reflections on practice, principles and process. Springer, Dordrecht/Netherlands, pp 253–266CrossRefGoogle Scholar
  52. van de Poel IR, Royakkers L (2011) Ethics, technology, and engineering: an introduction. Wiley-Blackwell, MaldenGoogle Scholar
  53. Vinck D (ed) (2003) Everyday engineering. Ethnography of design and innovation. MIT Press, CambridgeGoogle Scholar
  54. Walker WE (1994) Responsible policy making. In: Wallace WA (ed) Ethics in modeling. Pergamon, Oxford/Tarrytown, pp 226–241Google Scholar
  55. Walker WE (2009) Does the best practice of rational-style model-based policy analysis already include ethical considerations? Omega 37(6):1051–1062. doi:10.1016/ Scholar
  56. Whitaker JC, Mancini RK (2012) Technical documentation and process. CRC Press, Boca RatonGoogle Scholar
  57. Woodhouse E, Patton JW (2004) Design by society: science and technology studies and the social shaping of design1. Des Issues 20(3):1–12. doi:10.1162/0747936041423262CrossRefGoogle Scholar
  58. Zeigler BP, Praehofer H, Kim TG (2000) Theory of modeling and simulation, 2nd edn. Academic, San DiegoGoogle Scholar
  59. Zwart SD, Jacobs J, van de Poel I (2013) Values in engineering models: social ramifications of modeling in engineering design. Eng Stud 5(2):93–116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.TU EindhovenEindhovenThe Netherlands

Personalised recommendations