Advertisement

Metallic Multilayers: Discovery of Interlayer Exchange Coupling and GMR

  • Peter GrünbergEmail author
  • Daniel E. BürglerEmail author

Abstract

The role of magnetic multilayer structures for the emergence of spintronics is discussed. Initial studies of magnetic interactions mainly by Brillouin light scattering lead to the discovery of antiferromagnetic interlayer exchange coupling. The novel possibility to control the relative alignment of spins separated by only a few nanometers with an external magnetic field triggered the first observations of the giant magnetoresistance effect, which then became the cornerstone of spintronics. Both oscillatory interlayer exchange coupling and giant magnetoresistance are introduced, and a picture for their microscopic origin is presented.

Keywords

Spin Valve Giant Magnetoresistance Interlayer Thickness Quantum Well State Interlayer Exchange Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

AMR

Anisotropic magnetoresistance

B

Magnetic field

BLS

Brillouin light scattering

CIP

Current in plane

CPP

Current-perpendicular plane

d0

Thickness of spacer layers

d1, d2

Thickness of ferromagnetic layers

DE

Damon-Eshbach

DOS

Density of states

EF

Fermi energy

EIEC

IEC energy density

En

Discrete energy levels

FM

Ferromagnetic

GMR

Giant magnetoresistance

HEB

Exchange bias field

IEC

Interlayer exchange coupling

J1

Bilinear IEC parameter

J2

Biquadratic IEC parameter

k

Perpendicular momentum component

M

Magnetization

MOKE

Magneto-optical Kerr effect

N↑(↓)

Spin up (down) DOS at Fermi level

NM

Nonmagnetic

q

Wave vector

Q

Critical spanning vector

QWS

Quantum well states

RKKY

Ruderman-Kittel-Kasuya-Yosida

rmaj(min)

Resistance of majority (minority) channel

RP(AP)

Resistance for parallel (antiparallel) alignment

SEMPA

Scanning electron microscopy with spin analysis

β

Scattering spin asymmetry parameter

θ

Angle between magnetizations

References

  1. 1.
    Sandercock JR (1975) Some recent applications of brillouin scattering in solid state physics. In: Queisser HJ (ed) Advances in solid state physics, vol 15. Vieweg, BraunschweigGoogle Scholar
  2. 2.
    Grünberg P, Metawe F (1977) Light scattering from bulk and surface spin waves in EuO. Phys Rev Lett 39:1561–1565CrossRefADSGoogle Scholar
  3. 3.
    Damon RW, Eshbach JR (1961) Magnetostatic modes of a ferromagnet slab. J Phys Chem Solids 19:308–320CrossRefADSGoogle Scholar
  4. 4.
    Grünberg P, Cottam MG, Vach W, Mayr CM, Camley RE (1982) Brillouin scattering of light by spin waves in thin ferromagnetic films. J Appl Phys 53:2078–2083CrossRefADSGoogle Scholar
  5. 5.
    Grünberg P, Schreiber R, Pang Y, Brodsky MB, Sowers H (1986) Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr-interlayer. Phys Rev Lett 57:2442–2445CrossRefADSGoogle Scholar
  6. 6.
    Barnas J, Grünberg P (1989) Spin waves in exchange coupled epitaxial double layers. J Magn Magn Mater 82:186–198CrossRefADSGoogle Scholar
  7. 7.
    Schäfer R (1995) Magneto-optical domain studies in coupled magnetic multilayers. J Magn Magn Mater 148:226–231CrossRefADSGoogle Scholar
  8. 8.
    Pierce DT, Unguris J, Celotta RJ (1994) Investigation of exchange coupled magnetic layers by scanning electron microscopy with polarization analysis (SEMPA) In: Heinrich B, Bland JAC (ed) Ultrathin magnetic structures, vol II. Springer, BerlinGoogle Scholar
  9. 9.
    Rührig M, Schäfer R, Hubert A, Mosler R, Wolf JA, Demokritov S, Grünberg P (1991) Domain observations on Fe-Cr-Fe layered structures – evidence for a biquadratic coupling effect. Phys Status Solidi (a) 125:635–656CrossRefADSGoogle Scholar
  10. 10.
    Bruno P, Chappert C (1992) Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Phys Rev B 46:261–270CrossRefADSGoogle Scholar
  11. 11.
    Demokritov SO (1998) Biquadratic interlayer coupling in layered magnetic systems. J Phys D Appl Phys 31:925–941CrossRefADSGoogle Scholar
  12. 12.
    Parkin SSP (1991) Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals. Phys Rev Lett 67:3598–3601CrossRefADSGoogle Scholar
  13. 13.
    Bruno P (1995) Theory of interlayer magnetic coupling. Phys Rev B 52:411–439CrossRefADSGoogle Scholar
  14. 14.
    Stiles MD (1999) Interlayer exchange coupling. J Magn Magn Mater 200:322–337CrossRefADSGoogle Scholar
  15. 15.
    Leng Q, Cros V, Schäfer R, Fuss A, Grünberg P, Zinn W (1993) Interlayer coupling across noble metal spacers. J Magn Magn Mater 126:367–373CrossRefADSGoogle Scholar
  16. 16.
    Fert A (2007) The origin, development and future of spintronics. In: Grandin K (ed) The nobel prizes 2007. Nobel Foundation, StockholmGoogle Scholar
  17. 17.
    Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friedrich A, Chazelas J (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61:2472–2475CrossRefADSGoogle Scholar
  18. 18.
    Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828–4830CrossRefADSGoogle Scholar
  19. 19.
    Dieny B (1994) Giant magnetoresistance in spin-valve multilayers. J Magn Magn Mater 136:335–359CrossRefADSGoogle Scholar
  20. 20.
    Barthélémy A, Fert A, Petroff F (1999) In: Buschow KHJ (ed) Handbook of magnetic materials, vol 12, Giant magnetoresistance in magnetic multilayers. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Bozorth RM (1950) Atomic moments of ferromagnetic alloys. Phys Rev 79:887CrossRefADSGoogle Scholar
  22. 22.
    George JM, Pereira LG, Barthélémy A, Petroff F, Steren L, Duvail JL, Fert A, Loloee R, Holody P, Schroeder PA (1994) Inverse spin-valve-type magnetoresistance in spin engineered multi-layered structures. Phys Rev Lett 72:408–411CrossRefADSGoogle Scholar
  23. 23.
    Buchmeier M, Schreiber R, Bürgler DE, Grünberg P (2003) Inverse giant magnetoresistance due to spin-dependent interface scattering in Fe/Cr/Au/Co. Europhys Lett 63:874–880CrossRefADSGoogle Scholar
  24. 24.
    Hsu SY, Barthélémy A, Holody P, Loloee R, Fert A (1997) Towards a unified picture of spin dependent transport in and perpendicular giant magnetoresistance and bulk alloys. Phys Rev Lett 78:2652–2655CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Peter Grünberg Institute, Electronic Properties (PGI-6)Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations