Abstract
This chapter describes the use of electron spins in semiconductor quantum dots as quantum bits for quantum information processing. Among the central themes of the chapter is the mechanism for a two-qubit operation based on the exchange interaction. Another important topic pertains to the mechanisms that lead to the loss of quantum coherence and are related to phonons or nuclear spins in the host semiconductor. The last part of this chapter is focused on the prospects for extending the ideas of spin-based quantum information to new materials such as graphene, where both nuclear-spin- and phonon-induced decoherence and relaxation are suppressed.
Keywords
- Hyperfine Interaction
- Quantum Gate
- Gate Operation
- CNOT Gate
- Quantum Error Correction
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsAbbreviations
- 13C:
-
Carbon-13
- 2D:
-
Two dimensional
- 2DEG:
-
Two-dimensional electron gas
- AlGaAs:
-
Aluminum gallium arsenide
- As:
-
Arsenic
- CNOT:
-
Controlled NOT (NOT is not acronym)
- EPC:
-
Electron phonon coupling
- Ga:
-
Gallium
- GaAs:
-
Gallium arsenide
- HF:
-
Hyperfine
- InGaAs:
-
Indium gallium arsenide
- MoS2 :
-
Molybdenum disulfide
- QD:
-
Quantum dot
- QPC:
-
Quantum point contact
- RSA:
-
Rivest–Shamir–Adleman
- SiGe:
-
Silicon–germanium
- SO:
-
Spin orbit
- SU(2):
-
Special unitary group in two dimensions
- WS2 :
-
Tungsten disulfide
- XOR:
-
Exclusive OR (OR is not an acronym)
References
Struck PR (2013) Spin coherence in carbon-based nanodevices. Chapter 2, PhD thesis, University of Konstanz
Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. Proceedings of the 35th annual symposium on the foundations of computer science. IEEE Press, Los Alamitos, p 124
DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschr Phys 48:771; quant-ph/0002077
Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge, UK
Preskill J (1998) Reliable quantum computers. Proc Roy Soc Lond A 454:385
Mermin ND (2007) Quantum computer science: an introduction. Cambridge University Press, Cambridge, UK
Knill E (2005) Quantum computing with realistically noisy devices. Nature 434:39
Fowler AG, Mariantoni M, Martinis JM, Cleland AN (2012) Surface codes: Towards practical large-scale quantum computation. Phys Rev A 86:032324
DiVincenzo DP (1995) Two-qubit gates are universal for quantum computation. Phys Rev A 51:1015
Barenco A et al (1995) Elementary gates for quantum computation. Phys Rev A 52:3457
Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev B 57:120
Cirac JI, Zoller P (2012) Goals and opportunities in quantum simulation. Nat Phys 8:264
Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc Roy Soc Lond A 400:97
Kane BE (1998) A silicon-based nuclear spin quantum computer. Nature 393:6681
Vrijen R, Yablonovitch E, Wang K, Jiang HW, Balandin A, Roychowdhury V, Mor T, DiVincenzo DP (2000) Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys Rev A 62:012306
Barnes CHW, Shilton JM, Robinson AM (2000) Quantum computation using electrons trapped by surface acoustic waves. Phys Rev B 62:8410
Kloeffel C, Loss D (2013) Prospects for Spin-based quantum computing. Annu Rev Condens Matter Phys 4:51; arXiv:1204.5917
Hanson R, Kouwenhoven LP, Petta JR, Tarucha JR, Vandersypen LMK (2007) Spins in few-electron quantum dots. Rev Mod Phys 79:1217
Burkard G, Loss D, DiVincenzo D (1999) Coupled quantum dots as quantum gates. Phys Rev A 59:2070
Petta JR et al (2005) Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science 309:2180
Kavokin KV (2001) Anisotropic exchange interaction of localized conduction-band electrons in semiconductors. Phys Rev B 64:075305
Bonesteel NE, Stepanenko D, DiVincenzo DP (2001) Anisotropic spin exchange in pulsed quantum gates. Phys Rev Lett 87:207901
Koppens FHL et al (2006) Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442:766
Brunner R et al (2011) Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. Phys Rev Lett 107:146801
DiVincenzo DP, Bacon D, Kempe J, Burkard G, Whaley KB (2000) Universal quantum computation with the exchange interaction. Nature 408:339
Kawano Y et al (2005) Existence of the exact CNOT on a quantum computer with the exchange interaction. Quantum Inf Process 4:65
Fong BH, Wandzura SM (2011) Universal quantum computation and leakage reduction in the 3-qubit decoherence free subsystem. J Quantum Inf Comput 11:1003; arXiv:quant-ph/0411013
Zeuch D (2011) Quantum computation with restricted spin interactions. Diploma thesis, University of Konstanz
Medford J et al (2013) Quantum-dot-based resonant exchange qubit. Phys Rev Lett 111:050501
Taylor JM, Srinivasa V, Medford J (2013) Electrically protected resonant exchange qubits in triple quantum dots. Phys Rev Lett 111:050502
Doherty AC, Wardrop MP (2013) Two-qubit gates for resonant exchange qubits. Phys Rev Lett 111:050503
Levy J (2002) Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys Rev Lett 89:147902
Kempe J, Whaley KB (2002) Exact gate sequences for universal quantum computation using the XY interaction alone. Phys Rev A 65:052330
Vala J, Whaley KB (2002) Encoded universality for generalized anisotropic exchange hamiltonians. Phys Rev A 66:022304
Burkard G, Loss D, DiVincenzo DP, Smolin JA (1999) Physical optimization of quantum error correction circuits. Phys Rev B 60:11404
Khaetskii AV, Nazarov YV (2001) Spin-flip transitions between zeeman sublevels in semiconductor quantum dots. Phys Rev B 64:125316
Dyakonov MI, Yu V (1986) Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Kachorovskii Fiz Tech Poluprovodn 20:178; Sov Phys Semicond 20:110
van Vleck J (1940) Paramagnetic relaxation times for titanium and chrome alum. Phys Rev 57:426
Amasha S, MacLean K, Radu IP, Zumbühl DM, Kastner MA, Hanson MP, Gossard AC (2008) Electrical control of spin relaxation in a quantum dot. Phys Rev Lett 100:46803
Bulaev DV, Loss D (2005) Spin relaxation and decoherence of holes in quantum dots. Phys Rev Lett 95:076805
Heiss D et al (2007) Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys Rev B 76:241306
Gerardot BD et al (2008) Optical pumping of a single hole spin in a quantum dot. Nature 451:441
Golovach VN, Khaetskii AV, Loss D (2004) Phonon-induced decay of the electron spin in quantum dots. Phys Rev Lett 93:016601
Coish WA (2006) Spins in quantum dots: Hyperfine interaction, transport, and coherent control. PhD thesis, University of Basel
Coish WA, Baugh J (2009) Nuclear spins in nanostructures. Phys Status Solidi B 246:2203
Urbaszek B et al (2013) Nuclear spin physics in quantum dots: An optical investigation. Rev Mod Phys 85:79
Klauser D, Coish WA, Loss D (2006) Nuclear spin state narrowing via gate-controlled Rabi oscillations in a double quantum dot. Phys Rev B 73:205302
Fischer J, Coish W, Bulaev D, Loss D (2008) Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys Rev B 78:155329
Coish WA, Loss D (2004) Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys Rev B 70:195340
Chekhovich EA et al (2010) Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot. Phys Rev Lett 104:066804
Foletti S, Bluhm H, Mahalu D, Umansky V, Yacoby A (2009) Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nat Phys 5:903
Ribeiro H, Burkard G (2009) Nuclear state preparation via landau-zener-stückelberg transitions in double quantum dots. Phys Rev Lett 102:216802
Stepanenko D, Burkard G, Giedke G, Imamoglu A (2006) Enhancement of electron spin coherence by optical preparation of nuclear spins. Phys Rev Lett 96:136401
Togan E, Chu Y, Imamoglu A, Lukin MD (2011) Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit. Nature 478:497501
Taylor JM et al (2005) Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat Phys 1:177
Hanson R, Burkard G (2007) Universal set of quantum gates for double-dot spin qubits with fixed interdot coupling. Phys Rev Lett 98:050502
Trauzettel B, Bulaev DV, Loss D, Burkard G (2007) Spin qubits in graphene quantum dots. Nat Phys 3:192
Diez M, Burkard G (2012) Bias-dependent D’yakonov-Perel’spin relaxation in bilayer graphene. Phys Rev B 85:195412
Kormanyos A et al (2013) Intrinsic and substrate induced spin-orbit interaction in chirally stacked trilayer graphene. Phys Rev B 88:045416
Klinovaja J, Loss D (2013) Spintronics in MoS2 monolayer quantum wires. Phys Rev B 88:075404
Rohling N, Burkard G (2012) Universal quantum computing with spin and valley states. New J Phys 14:083008
Katsnelson MI (2012) Graphene: Carbon in Two Dimensions. Graphene. Cambridge University Press
Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev B 73:235411
Tworzydło J, Trauzettel B, Titov M, Rycerz A, Beenakker CWJ (2006) Sub-poissonian shot noise in graphene. Phys Rev Lett 96:246802
Liu XL, Hug D, Vandersypen LMK (2010) Gate-defined graphene double quantum dot and excited state spectroscopy. Nano Lett 10:1623
Braun M, Struck PR, Burkard G (2011) Spin exchange interaction with tunable range between graphene quantum dots. Phys Rev B 84:115445
Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, van den Brink J (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B 76:073103
Recher P, Nilsson J, Burkard G, Trauzettel B (2009) Bound states and magnetic field induced valley splitting in gate-tunable graphene quantum dots. Phys Rev B 79:85407
Goossens ASM et al (2012) Gate-defined confinement in bilayer graphene-hexagonal boron nitride hybrid devices. Nano Lett 12:4656
Struck PR, Burkard G (2010) Effective time-reversal symmetry breaking in the spin relaxation in a graphene quantum dot. Phys Rev B 82:125401
Fischer J, Trauzettel B, Loss D (2009) Hyperfine interaction and electron-spin decoherence in graphene and carbon nanotube quantum dots. Phys Rev B 80:155401
Palyi A, Burkard G (2009) Hyperfine-induced valley mixing and the spin-valley blockade in carbon-based. Phys Rev B 80:201404(R)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Science+Business Media Dordrecht
About this entry
Cite this entry
Struck, P.R., Burkard, G. (2016). Spin Quantum Computing. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_5
Download citation
DOI: https://doi.org/10.1007/978-94-007-6892-5_5
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-6891-8
Online ISBN: 978-94-007-6892-5
eBook Packages: Physics and AstronomyReference Module Physical and Materials Science