Skip to main content

Spintronics of Topological Insulators

  • Reference work entry
Handbook of Spintronics

Abstract

Topological insulators (TIs) are an emerging group of materials with new states of quantum matter. Owing to a nontrivial band topology and strong spin–orbit coupling, gapless Dirac surface states protected by time-reversal symmetry are formed, and surface conductions exhibit unusual spin-momentum locking features. As a result, TIs are regarded as one of the most intriguing 2D materials, which arises broad interest among condensed matter physics, material science, nanoelectronics, spintronics, and energy harvesting applications. In this chapter, several important concepts that preceded the discovery of TIs have been discussed, and the roadmap of the topological-bonded quantum Hall trio has been outlined. In addition, an overview has been provided on the progress with regard to the realization of the quantum spin Hall effect in 2D CdTe/HgTe quantum wells, the extension of TIs into the 3D regime, and the experimental approaches to manipulate the surface states via both the surface-sensitive spectroscopy and electrical detections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARPES:

Angle-resolved photoemission spectroscopy

DOS:

Density of states

FWHM:

Full width at half maximum

HLN:

Hikami–Larkin–Nagaoka

IQHE:

Integer quantum Hall effect

LL:

Landau level

MC:

Magnetoconductivity

QAHE:

Quantum anomalous Hall effect

QHE:

Quantum Hall effect

QLs:

Quintuple layers

QSH:

Quantum spin Hall

SdH:

Shubnikov–de Haas

SOC:

Spin–orbit coupling

SS:

Surface states

STM:

Scanning tunneling microscopy

STS:

Scanning tunneling spectroscopy

TI:

Topological insulator

TKNN:

Thouless, Kohmoto, Nightingale, and den Nijs

TRS:

Time-reversal symmetry

VLS:

Vapor–liquid–solid method

WAL:

Weak antilocalization

WL:

Weak localization

References

  1. Qi X-L, Zhang S-C (2011) Topological insulators and superconductors. Rev Mod Phys 83:1057–1110

    Article  ADS  Google Scholar 

  2. Moore JE (2010) The birth of topological insulators. Nature 464:194–198

    Article  ADS  Google Scholar 

  3. Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82:3045

    Article  ADS  Google Scholar 

  4. Zhang Y et al (2010) Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat Phys 6:584–588

    Article  Google Scholar 

  5. Zhang T et al (2009) Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys Rev Lett 103:266803

    Article  ADS  Google Scholar 

  6. Qi X-L, Hughes TL, Zhang S-C (2008) Topological field theory of time-reversal invariant insulators. Phys Rev B 78:195424

    Article  ADS  Google Scholar 

  7. Zhang H et al (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442

    Article  Google Scholar 

  8. Kane CL, Mele EJ (2005) Z2 topological order and the quantum spin hall effect. Phys Rev Lett 95:146802

    Article  ADS  Google Scholar 

  9. Moore JE, Balents L (2007) Topological invariants of time-reversal-invariant band structures. Phys Rev B 75:121306

    Article  ADS  Google Scholar 

  10. Ando T, Matsumoto Y, Uemura Y (1975) Theory of Hall effect in a two-dimensional electron system. J Physical Soc Japan 39:279–288

    Article  ADS  Google Scholar 

  11. Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys Rev Lett 45:494–497

    Article  ADS  Google Scholar 

  12. Roth LM (1966) Semiclassical theory of magnetic energy levels and magnetic susceptibility of Bloch electrons. Phys Rev 145:434

    Article  ADS  Google Scholar 

  13. Laughlin RB (1981) Quantized Hall conductivity in two dimensions. Phys Rev B 23:5632–5633

    Article  ADS  Google Scholar 

  14. Stormer HL (1999) Nobel Lecture: the fractional quantum Hall effect. Rev Mod Phys 71:875–889

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Novoselov KS et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379

    Article  ADS  Google Scholar 

  16. Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M (1982) Quantized Hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49:405–408

    Article  ADS  Google Scholar 

  17. König M et al (2007) Quantum spin Hall insulator state in HgTe quantum wells. Science 318:766–770

    Article  ADS  Google Scholar 

  18. Qi X-L, Zhang S-C (2010) The quantum spin Hall effect and topological insulators. Phys Today 63:33–38

    Article  ADS  Google Scholar 

  19. Bernevig BA, Hughes TL, Zhang S-C (2006) Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314:1757–1761

    Article  ADS  Google Scholar 

  20. Bernevig BA, Zhang S-C (2006) Quantum spin Hall effect. Phys Rev Lett 96:106802

    Article  ADS  Google Scholar 

  21. Berry MV (1984) Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond A Math Phys Sci 392:45–57

    Article  ADS  MATH  Google Scholar 

  22. Ando T, Nakanishi T, Saito R (1998) Berry’s phase and absence of back scattering in carbon nanotubes. J Physical Soc Japan 67:2857–2862

    Article  ADS  Google Scholar 

  23. Kane CL, Mele EJ (2005) Quantum spin Hall effect in graphene. Phys Rev Lett 95:226801

    Article  ADS  Google Scholar 

  24. Du LJ, Knez I, Sullivan G, Du RR (2015) Robust helical edge transport in gated InAs/GaSb bilayers. Phys Rev Lett 114:096802

    Article  ADS  Google Scholar 

  25. Xu Y et al (2013) Large-gap quantum spin Hall insulators in tin films. Phys Rev Lett 111:136804

    Article  ADS  Google Scholar 

  26. Yu R et al (2010) Quantized anomalous Hall effect in magnetic topological insulators. Science 329:61–64

    Article  ADS  Google Scholar 

  27. He K, Wang Y, Xue Q-K (2013) Quantum anomalous Hall effect. Natl Sci Rev 1:38–48

    Article  Google Scholar 

  28. Liu C-X, Qi X-L, Dai X, Fang Z, Zhang S-C (2008) Quantum anomalous Hall effect in Hg1-yMnyTe quantum wells. Phys Rev Lett 101:146802

    Article  ADS  Google Scholar 

  29. Buhmann H (2012) Towards the quantum anomalous Hall effect in HgMnTe. Bull Am Phys Soc 57

    Google Scholar 

  30. Chang C-Z et al (2013) Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340:167–170

    Article  ADS  Google Scholar 

  31. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press

    Google Scholar 

  32. Kou XF et al (2013) Manipulating surface-related ferromagnetism in modulation-doped topological insulators. Nano Lett 13:4587–4593

    Article  ADS  Google Scholar 

  33. Roth A et al (2009) Nonlocal transport in the quantum spin Hall state. Science 325:294–297

    Article  ADS  Google Scholar 

  34. Checkelsky JG, Ye J, Onose Y, Iwasa Y, Tokura Y (2012) Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat Phys 8:729–733

    Article  Google Scholar 

  35. Hsieh D et al (2008) A topological Dirac insulator in a quantum spin Hall phase. Nature 452:970–974

    Article  ADS  Google Scholar 

  36. Fu L, Kane CL (2007) Topological insulators with inversion symmetry. Phys Rev B 76:045302

    Article  ADS  Google Scholar 

  37. Chen YL et al (2009) Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325:178–181

    Article  ADS  Google Scholar 

  38. Hor YS et al (2009) p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B 79:195208

    Google Scholar 

  39. Hsieh D et al (2009) Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett 103:146401

    Article  ADS  Google Scholar 

  40. Hsieh D et al (2009) A tunable topological insulator in the spin helical Dirac transport regime. Nature 460:1101–1105

    Article  ADS  Google Scholar 

  41. Park SR et al (2010) Quasiparticle scattering and the protected nature of the topological states in a parent topological insulator Bi2Se3. Phys Rev B 81:041405

    Article  ADS  Google Scholar 

  42. Xia Y et al (2009) Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys 5:398–402

    Article  Google Scholar 

  43. Alpichshev Z et al (2010) STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Phys Rev Lett 104:016401

    Article  ADS  Google Scholar 

  44. He L et al (2011) Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111). J Appl Phys 109:103702

    Article  ADS  Google Scholar 

  45. Lang M et al (2011) Revelation of topological surface states in Bi2Se3 thin films by In Situ Al passivation. ACS Nano 6:295–302

    Article  Google Scholar 

  46. He L et al (2012) Surface-dominated conduction in a 6 nm thick Bi2Se3 thin film. Nano Lett 12:1486–1490

    Article  ADS  Google Scholar 

  47. Yu X et al (2013) Separation of top and bottom surface conduction in Bi2Te3 thin films. Nanotechnology 24:015705

    Article  ADS  Google Scholar 

  48. Lang M et al (2012) Competing weak localization and weak antilocalization in ultrathin topological insulators. Nano Lett 13:48–53

    Article  ADS  Google Scholar 

  49. He L et al (2013) Evidence of the two surface states of (Bi0.53Sb0.47)2Te3 films grown by van der Waals epitaxy. Sci Rep 3:3406

    Google Scholar 

  50. Kou XF et al (2012) Magnetically doped semiconducting topological insulators. J Appl Phys 112:063912–063916

    Article  ADS  Google Scholar 

  51. Kou X et al (2013) Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano

    Google Scholar 

  52. Kou XF et al (2011) Epitaxial growth of high mobility Bi2Se3 thin films on CdS. Appl Phys Lett 98:242102

    Article  ADS  Google Scholar 

  53. Lang M et al (2014) Proximity induced high-temperature magnetic order in topological insulator - ferrimagnetic insulator heterostructure. Nano Lett 14:3459–3465

    Article  ADS  Google Scholar 

  54. Wang M-X et al (2012) The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science

    Google Scholar 

  55. Liu M et al (2012) Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys Rev Lett 108:036805

    Article  ADS  Google Scholar 

  56. Chang C-Z et al (2013) Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv Mater 25:1065–1070

    Article  ADS  Google Scholar 

  57. Zhang D et al (2012) Interplay between ferromagnetism, surface states, and quantum corrections in a magnetically doped topological insulator. Phys Rev B 86:205127

    Article  ADS  Google Scholar 

  58. Richardella A et al (2010) Coherent heteroepitaxy of Bi2Se3 on GaAs (111)B. Appl Phys Lett 97:262104–262103

    Article  ADS  Google Scholar 

  59. Kandala A et al (2013) Growth and characterization of hybrid insulating ferromagnet-topological insulator heterostructure devices. Appl Phys Lett 103:202409

    Article  ADS  Google Scholar 

  60. Taskin AA, Sasaki S, Segawa K, Ando Y (2012) Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys Rev Lett 109:066803

    Article  ADS  Google Scholar 

  61. Taskin AA, Sasaki S, Segawa K, Ando Y (2012) Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv Mater 24:5581–5585

    Article  Google Scholar 

  62. Zhang G et al (2009) Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl Phys Lett 95:053114

    Article  ADS  Google Scholar 

  63. Kim YS et al (2011) Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi2Se3. Phys Rev B 84:073109

    Article  ADS  Google Scholar 

  64. Chen J et al (2010) Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3. Phys Rev Lett 105:176602

    Article  ADS  Google Scholar 

  65. Schreyeck S et al (2013) Molecular beam epitaxy of high structural quality Bi2Se3 on lattice matched InP(111) substrates. Appl Phys Lett 102:041914

    Article  ADS  Google Scholar 

  66. Teweldebrhan D, Goyal V, Balandin AA (2010) Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett 10:1209–1218

    Article  ADS  Google Scholar 

  67. Shahil KM (2010) Crystal symmetry breaking in few-quintuple Bi2Te3 films: applications in nanometrology of topological insulators. Appl Phys Lett 96:153103

    Article  ADS  Google Scholar 

  68. Kong D et al (2009) Topological insulator nanowires and nanoribbons. Nano Lett 10:329–333

    Article  ADS  Google Scholar 

  69. Cha JJ, Koski, KJ, Cui Y (2013) Topological insulator nanostructures. phys status solidi (RRL) 7:15–25

    Google Scholar 

  70. Hong SS, Cha JJ, Kong D, Cui Y (2012) Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons. Nat Commun 3:757

    Article  ADS  Google Scholar 

  71. Kong D et al (2011) Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning. Nat Nano 6:705–709

    Article  Google Scholar 

  72. Kong D et al (2010) Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett 10:2245–2250

    Article  ADS  Google Scholar 

  73. McClure JW (1956) Diamagnetism of graphite. Phys Rev 104:666–671

    Article  ADS  Google Scholar 

  74. Ando Y (2013) Topological insulator materials. J Physical Soc Japan 82:102001

    Article  ADS  Google Scholar 

  75. Onsager L (1952) Interpretation of the de Haas-van Alphen effect. Philos Mag 43:1006–1008

    Article  Google Scholar 

  76. Butch NP et al (2010) Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals. Phys Rev B 81:241301

    Article  ADS  Google Scholar 

  77. Analytis JG et al (2010) Two-dimensional surface state in the quantum limit of a topological insulator. Nat Phys 6:960–964

    Article  Google Scholar 

  78. Liu M et al (2011) Electron interaction-driven insulating ground state in Bi2Se3 topological insulators in the two-dimensional limit. Phys Rev B 83:165440

    Article  ADS  Google Scholar 

  79. Steinberg H, Laloe JB, Fatemi V, Moodera JS, Jarillo-Herrero P (2011) Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys Rev B 84:233101

    Article  ADS  Google Scholar 

  80. Chen J et al (2011) Tunable surface conductivity in Bi2Se3 revealed in diffusive electron transport. Phys Rev B 83:241304

    Article  ADS  Google Scholar 

  81. Xiu F et al (2011) Manipulating surface states in topological insulator nanoribbons. Nat Nanotechnol 6:216–221

    Article  ADS  Google Scholar 

  82. Ren Z, Taskin AA, Sasaki S, Segawa K, Ando Y (2010) Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys Rev B 82:241306

    Article  ADS  Google Scholar 

  83. Wang Y et al (2012) Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett 12:1170–1175

    Article  ADS  Google Scholar 

  84. Analytis JG et al (2010) Bulk Fermi surface coexistence with Dirac surface state in Bi2Se3: a comparison of photoemission and Shubnikov-de Haas measurements. Phys Rev B 81:205407

    Article  ADS  Google Scholar 

  85. Peng H et al (2010) Aharonov-Bohm interference in topological insulator nanoribbons. Nat Mater 9:225–229

    ADS  Google Scholar 

  86. Hikami S, Larkin AI, Nagaoka Y (1980) Spin-orbit interaction of magnetoresistance in the two dimensional random aystem. Prog Theor Phys 63:707–710

    Article  ADS  Google Scholar 

  87. Lu H-Z, Shi J, Shen S-Q (2011) Competition between weak localization and antilocalization in topological surface states. Phys Rev Lett 107:076801

    Article  ADS  Google Scholar 

  88. Bergmann G (1984) Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys Rep 107:1–58

    Article  ADS  Google Scholar 

  89. Kou XF et al (2014) Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys Rev Lett 113:137201

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang L. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Wang, K.L., Lang, M., Kou, X. (2016). Spintronics of Topological Insulators. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_56

Download citation

Publish with us

Policies and ethics