Spin Current Generation by Spin Pumping

  • Kazuya AndoEmail author
  • Eiji Saitoh
Reference work entry


Magnetization dynamics is coupled with spin currents by exchanging the spin-angular momentum. This coupling allows to control magnetization by spin currents; spin injection into a ferromagnet induces magnetization precession. The inverse of this process, namely, spin current emission from precessing magnetization, is spin pumping, which offers a route for generating spin currents in a wide range of materials. This chapter describes experiments on the generation and detection of spin currents using the spin pumping and inverse spin-Hall effect. The inverse spin-Hall effect, conversion of spin currents into an electric voltage through spin-orbit interaction, induced by the spin pumping was first discovered in a metallic film. The spin pumping in this film is quantitatively consistent with a model calculation based on the Landau-Lifshitz-Gilbert equation. This dynamical spin injection, the spin pumping, offers an easy and versatile way for injecting spin currents into not only metals but also high-resistivity materials. In a metal/semiconductor junction, the spin pumping is demonstrated to be controlled electrically through the tuning of dynamical spin-exchange coupling at the interface. This spin-injection method works without applying a charge current, which makes it possible to generate spin currents from magnetic insulators; the spin pumping appears even in a metal/insulator junction due to finite spin-exchange interaction at the interface. The spin pumping from an insulator enables nonlinear generation of spin currents: nonlinear spin pumping. The combination of the spin pumping and inverse spin-Hall effect provides an essential route for exploring spin physics in condensed matter.


Electromotive Force Spin Current Spin Injection Nonlinear Spin Spin Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


Ferromagnetic resonance


Inverse spin-Hall effect




  1. 1.
    Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1CrossRefADSGoogle Scholar
  2. 2.
    Tserkovnyak Y, Brataas A, Bauer GEW (2002) Enhanced Gilbert damping in thin ferromagnetic films. Phys Rev Lett 88:117601CrossRefADSGoogle Scholar
  3. 3.
    Mizukami S, Ando Y, Miyazaki T (2002) Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys Rev B 66:104413CrossRefADSGoogle Scholar
  4. 4.
    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E (2010) Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464:262CrossRefADSGoogle Scholar
  5. 5.
    Saitoh E, Ueda M, Miyajima H, Tatara G (2006) Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl Phys Lett 88:182509CrossRefADSGoogle Scholar
  6. 6.
    Ando K, Kajiwara Y, Takahashi S, Maekawa S, Takemoto K, Takatsu M, Saitoh E (2008) Angular dependence of inverse spin--Hall effect induced by spin pumping investigated in a Ni81Fe19/Pt thin film. Phys Rev B 78:014413CrossRefADSGoogle Scholar
  7. 7.
    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E (2011) Inverse spin-Hall effect induced by spin pumping in metallic system. J Appl Phys 109(10):103913CrossRefADSGoogle Scholar
  8. 8.
    Morrish AH (1980) The physical principles of magnetism. Robert E. Krieger, New YorkGoogle Scholar
  9. 9.
    Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375CrossRefADSGoogle Scholar
  10. 10.
    Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Quantifying Spin Hall Angles from Spin Pumping: Experiments and Theory. Phys Rev Lett 104(4):046601CrossRefADSGoogle Scholar
  11. 11.
    Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E (2008) Electric manipulation of spin relaxation using the spin Hall effect. Phys Rev Lett 101:036601CrossRefADSGoogle Scholar
  12. 12.
    Tannenwald PE, Seavey MH Jr (1959) Microwave resonance in thin ferromagnetic films. J Phys Radium 20:323CrossRefGoogle Scholar
  13. 13.
    Juretschke HJ (1960) Electromagnetic theory of dc effects in ferromagnetic resonance. J Appl Phys 31:1401CrossRefADSGoogle Scholar
  14. 14.
    Chazalviel JN, Solomon I (1972) Experimental evidence of the anomalous Hall effect in a nonmagnetic semiconductor. Phys Rev Lett 29:1676CrossRefADSGoogle Scholar
  15. 15.
    Inoue HY, Harii K, Ando K, Sasage K, Saitoh E (2007) Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation. J Appl Phys 102:083915CrossRefADSGoogle Scholar
  16. 16.
    Silsbee RH, Janossy A, Monod P (1979) Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic—normal-metal interface. Phys Rev B 19:4382CrossRefADSGoogle Scholar
  17. 17.
    Vila L, Kimura T, Otani Y (2007) Evolution of the Spin Hall Effect in Pt Nanowires: Size and Temperature Effects. Phys Rev Lett 99(22):226604CrossRefADSGoogle Scholar
  18. 18.
    Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer GEW (2003) Dynamic exchange coupling in magnetic bilayers. Phys Rev Lett 90:187601CrossRefADSGoogle Scholar
  19. 19.
    Brataas A, Tserkovnyak Y, Bauer GEW, Halperin BI (2002) Spin battery operated by ferromagnetic resonance. Phys Rev B 66:060404(R)CrossRefADSGoogle Scholar
  20. 20.
    Ando K, Takahashi S, Ieda J, Kurebayashi H, Trypiniotis T, Barnes CHW, Maekawa S, Saitoh E (2011) Electrically tunable spin injector free from the impedance mismatch problem. Nat Mater 10:655CrossRefADSGoogle Scholar
  21. 21.
    L’vov VS (1994) Wave turbulence under parametric excitation. Springer, BerlinCrossRefzbMATHGoogle Scholar
  22. 22.
    Suhl H (1957) The theory of ferromagnetic resonance at high signal powers. J Phys Chem Solids 1:209CrossRefADSGoogle Scholar
  23. 23.
    Rezende S, de Aguiar F (1990) Spin-wave instabilities, auto-oscillations, and chaos in yttrium-iron-garnet. Proc IEEE 78(6):893CrossRefGoogle Scholar
  24. 24.
    Kabos P, Wiese G, Patton CE (1994) Measurement of spin wave instability magnon distributions for subsidiary absorption in yttrium iron garnet films by Brillouin light scattering. Phys Rev Lett 72(13):2093CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Applied Physics and Physico-InformaticsKeio UniversityYokohamaJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations