Physical Principles of Spin Pumping

  • Saburo TakahashiEmail author
Reference work entry


The spin pumping is a versatile method to create the spin current and spin accumulation in various conducting materials in hybrid nanostructures. In this chapter a theoretical description for spin pumping from a ferromagnet into a normal metal is presented based on the spin-exchange interaction between localized moments and conduction electrons in hybrid nanostructures. It is demonstrated that pure spin currents are generated by the coherent spin pumping due to ferromagnetic resonance and the thermal spin pumping due to the spin Seebeck effect. The inverse effect that the spin dynamics is manipulated by spin injection into a ferromagnet from a normal metal with strong spin-orbit coupling using the spin-Hall effect is also discussed.


  1. 1.
    Maekawa S (ed) (2006) Concepts in spin electronics. Oxford University Press, OxfordzbMATHGoogle Scholar
  2. 2.
    Tsymbal E, Zutić I (eds) (2011) Handbook of spin transport and magnetism. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Žutić I, Fabian J, Das Sarma S (2004) Spintronics: Fundamentals and applications. Rev Mod Phys 76:323CrossRefADSGoogle Scholar
  4. 4.
    Maekawa S, Valenzuela SO, Saitoh E, Kimura T (eds) (2012) Spin current. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys Rev Lett 55:1790CrossRefADSGoogle Scholar
  6. 6.
    Johnson M (1993) Spin accumulation in gold films. Phys Rev Lett 70:2142CrossRefADSGoogle Scholar
  7. 7.
    Jedema FJ, Filip AT, van Wees BJ (2001) Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410:345CrossRefADSGoogle Scholar
  8. 8.
    Jedema FJ, Heersche HB, Filip AT, Baselmans JJA, van Wees BJ (2002) Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416:713CrossRefADSGoogle Scholar
  9. 9.
    Lou XH, Adelmann C, Crooker SA, Garlid ES, Zhang J, Reddy KSM, Flexner SD, Palmstrom CJ, Crowell PA (2007) Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat Phys 3:197CrossRefGoogle Scholar
  10. 10.
    Han W, McCreary KM, Pi K, Wang WH, Li Y, Wen H, Chen JR, Kawakami RK (2012) Spin transport and relaxation in graphene. J Magn Magn Mater 324:369CrossRefADSGoogle Scholar
  11. 11.
    Takahashi S, Maekawa S (2003) Spin injection and detection in magnetic nanostructures. Phys Rev B 67:052409CrossRefADSGoogle Scholar
  12. 12.
    Silsbee RH, Janossy A, Monod P (1979) Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic-normal-metal interface. Phys Rev B 19:4382CrossRefADSGoogle Scholar
  13. 13.
    Mizukami S, Ando Y, Miyazaki T (2002) Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys Rev B 66:104413CrossRefADSGoogle Scholar
  14. 14.
    Tserkovnyak Y, Brataas A, Bauer GEW (2002) Spin pumping and magnetization dynamics in metallic multilayers. Phys Rev Lett 88:117601CrossRefADSGoogle Scholar
  15. 15.
    Costache MV, Sladkov M, Watts SM, van der Wal CH, van Wees BJ (2006) Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys Rev Lett 97:216603CrossRefADSGoogle Scholar
  16. 16.
    Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys Rev Lett 104:046601CrossRefADSGoogle Scholar
  17. 17.
    Ando K, Takahashi S, Ieda J, Kurebayashi H, Trypiniotis T, Barnes CHW, Maekawa S, Saitoh E (2011) Electrically tunable spin injector free from the impedance mismatch problem. Nat Mater 10:655CrossRefADSGoogle Scholar
  18. 18.
    Kato YK, Myers RC, Gossard AC, Awschalom DD (2004) Observation of the spin Hall effect in semiconductors. Science 306:1910CrossRefADSGoogle Scholar
  19. 19.
    Wunderlich J, Kaestner B, Sinova J, Jungwirth T (2005) Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett 94:047204CrossRefADSGoogle Scholar
  20. 20.
    Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176CrossRefADSGoogle Scholar
  21. 21.
    Saitoh E, Ueda M, Miyajima H, Tatara G (2006) Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl Phys Lett 88:182509CrossRefADSGoogle Scholar
  22. 22.
    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S (2007) Room-temperature reversible spin Hall effect. Phys Rev Lett 98:156601CrossRefADSGoogle Scholar
  23. 23.
    Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J, Takanasni K (2008) Giant spin Hall effect in a perpendicularly spin-polarized FePt/Au device. Nat Mater 7:125CrossRefADSGoogle Scholar
  24. 24.
    D’yakonov MI, Perel’ VI (1971) Current induced spin orientation of electrons in semiconductors. Phys Lett A 35:459CrossRefADSGoogle Scholar
  25. 25.
    Hirsch JE (1999) Spin Hall effect. Phys Rev Lett 83:1834CrossRefADSGoogle Scholar
  26. 26.
    Zhang S (2001) Spin Hall effect in the presence of spin diffusion. Phys Rev Lett 85:393CrossRefADSGoogle Scholar
  27. 27.
    Murakami S, Nagaosa N, Zhang SC (2003) Dissipationless quantum spin current at room temperature. Science 301:1348–1351CrossRefADSGoogle Scholar
  28. 28.
    Sinova J, Culcer D, Niu Q, Sinitsyn NA, Jungwirth T, MacDonald AH (2004) Universal intrinsic spin Hall effect. Phys Rev Lett 92:126603CrossRefADSGoogle Scholar
  29. 29.
    Takahashi S, Maekawa S (2002) Hall effect induced by a spin-polarized current in superconductors. Phys Rev Lett 88:116601CrossRefADSGoogle Scholar
  30. 30.
    Bauer GEW, Saitoh E, van Wees BJ (2012) Spin caloritronics. Nat Mater 11:391CrossRefADSGoogle Scholar
  31. 31.
    Adachi H, Uchida K, Saitoh E, Maekawa S (2013) Theory of the spin Seebeck effect. Rep Prog Phys 76:036501CrossRefADSGoogle Scholar
  32. 32.
    Tserkovnyak Y, Brataas A, Bauer GEW (2002) Spin pumping and magnetization dynamics in metallic multilayers. Phys Rev B 66:224403CrossRefADSGoogle Scholar
  33. 33.
    Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375CrossRefADSGoogle Scholar
  34. 34.
    Brataas A, Bauer GEW, Kelly PJ (2006) Non-collinear magnetoelectronics. Phys Rep 427:157CrossRefADSGoogle Scholar
  35. 35.
    Büttiker M, Thomas H, Prétre A (1994) Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Z Phys B 94:133CrossRefADSGoogle Scholar
  36. 36.
    Brouwer PW (1998) Scattering approach to parametric pumping. Phys Rev B 58:R10135CrossRefADSGoogle Scholar
  37. 37.
    Šimánek E, Heinrich B (2003) Gilbert damping in magnetic multilayers. Phys Rev B 67:144418CrossRefADSGoogle Scholar
  38. 38.
    Mills DL (2003) Ferromagnetic resonance relaxation in ultrathin metal films: The role of the conduction electrons. Phys Rev B 68:014419CrossRefADSGoogle Scholar
  39. 39.
    Zhang S, Li Z (2003) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93:127204CrossRefADSGoogle Scholar
  40. 40.
    Takeuchi A, Hosono K, Tatara G (2010) Diffusive versus local spin currents in dynamic spin pumping systems. Phys Rev B 81:144405CrossRefADSGoogle Scholar
  41. 41.
    Yosida K (1998) Theory of magnetism. Springer, Berlin, p 228Google Scholar
  42. 42.
    Gilbert TL (1955) A Lagrangian formulation of the gyromagnetic equation of the magnetic field. Phys Rev 100:1243Google Scholar
  43. 43.
    Bloch F (1946) Nuclear induction. Phys Rev 70:460CrossRefADSGoogle Scholar
  44. 44.
    Torrey HC (1956) Bloch equations with diffusion terms. Phys Rev 104:563CrossRefADSGoogle Scholar
  45. 45.
    Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer GEW (2003) Dynamic exchange coupling in magnetic bilayers. Phys Rev Lett 90:187601CrossRefADSGoogle Scholar
  46. 46.
    Takahashi S (2014) Giant enhancement of spin pumping in the out-of-phase precession mode. Appl Phys Lett 104:052407CrossRefADSGoogle Scholar
  47. 47.
    Mizukami S, Ando Y, Miyazaki T (2001) The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) films. Jpn J Appl Phys 40:580CrossRefADSGoogle Scholar
  48. 48.
    Azevedo A, Vilela-Leao LH, Rodriguez-Suarez RL, Santos AFL, Rezende SM (2011) Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: Theory and experiment. Phys Rev B 83:144402CrossRefADSGoogle Scholar
  49. 49.
    Nakayama H, Ando K, Harii K, Yoshino T, Takahashi R, Kajiwara Y, Uchida K, Fujikawa Y, Saitoh E (2012) Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni_{81}Fe_{19}/Pt films. Phys Rev B 85:144408CrossRefADSGoogle Scholar
  50. 50.
    Czeschka FD, Dreher L, Brandt MS, Weiler M, Althammer M, Imort IM, Reiss G, Thomas A, Schoch W, Limmer W, Huebl H, Gross R, Goennenwein STB (2011) Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. Phys Rev Lett 107:046601CrossRefADSGoogle Scholar
  51. 51.
    Takahashi S, Saitoh E, Maekawa S (2010) Spin current through a normal-metal/insulating-ferromagnet junction. J Phys Conf Ser 200:062030CrossRefADSGoogle Scholar
  52. 52.
    Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E (2010) Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464:262CrossRefADSGoogle Scholar
  53. 53.
    Kajiwara Y, Takahashi S, Maekawa S, Saitoh E (2011) Detection of spin-wave spin current in a magnetic insulator. IEEE Trans Magn 47:1591CrossRefADSGoogle Scholar
  54. 54.
    Castel V, Vlietstra N, Youssef JB, van Wees BJ (2012) Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl Phys Lett 101:132414CrossRefADSGoogle Scholar
  55. 55.
    Weiler M, Althammer M, Schreier M, Lotze J, Pernpeintner M, Meyer S, Huebl H, Gross R, Kamra A, Xiao J, Chen YT, Jiao H, Bauer GEW, Goennenwein STB (2013) Experimental test of the spin mixing interface conductivity concept. Phys Rev Lett 111:176601CrossRefADSGoogle Scholar
  56. 56.
    Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song YY, Sun Y, Wu M (2011) Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces. Phys Rev Lett 107:066604CrossRefADSGoogle Scholar
  57. 57.
    Jia X, Liu K, Xia K, Bauer GEW (2011) Spin transfer torque on magnetic insulators. Eur Phys Lett 96:17005CrossRefADSGoogle Scholar
  58. 58.
    Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E (2008) Electric manipulation of spin relaxation using the spin Hall effect. Phys Rev Lett 101:036601CrossRefADSGoogle Scholar
  59. 59.
    Liu L, Moriyama T, Ralph DC, Buhrman RA (2011) Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys Rev Lett 106:036601CrossRefADSGoogle Scholar
  60. 60.
    Kondou K, Sukegawa H, Mitani S, Tsukagoshi K, Kasai S (2012) Evaluation of spin Hall angle and spin diffusion length by using spin current-induced ferromagnetic resonance. Appl Phys Express 5:073002CrossRefADSGoogle Scholar
  61. 61.
    Liu L, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA (2012) Spin-torque switching with the giant spin Hall effect of Tantalum. Science 336:555CrossRefADSGoogle Scholar
  62. 62.
    Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1CrossRefADSGoogle Scholar
  63. 63.
    Petit S, Baraduc C, Thirion C, Ebels U, Liu Y, Li M, Wang P, Dieny B (2007) Spin-torque influence on the high-frequency magnetization fluctuations in magnetic tunnel junctions. Phys Rev Lett 98:077203CrossRefADSGoogle Scholar
  64. 64.
    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E (2011) Inverse spin-Hall effect induced by spin pumping in metallic system. J Appl Phys 109:103913CrossRefADSGoogle Scholar
  65. 65.
    Mosendz O, Vlaminck V, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys Rev B 82:214403CrossRefADSGoogle Scholar
  66. 66.
    Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48:7099CrossRefADSGoogle Scholar
  67. 67.
    Takahashi S, Imamura H, Maekawa S (2006) Spin injection and spin transport in hybrid nanostructures. In: Maekawa S (ed) Concept in spin electronics. Oxford University Press, OxfordGoogle Scholar
  68. 68.
    Takahashi S, Maekawa S (2008) Spin current in metals and superconductors. J Phys Soc Jpn 77:031009CrossRefADSGoogle Scholar
  69. 69.
    Takahashi S, Maekawa S (2008) Spin current, spin accumulation and spin Hall effect. Sci Technol Adv Mater 9:014105CrossRefGoogle Scholar
  70. 70.
    Takahashi S, Maekawa S (2011) Spin transport in hybrid nanostructures. In: Tsymbal E, Zutić I (eds) Handbook of spin transport and magnetism. CRC Press, Boca RatonGoogle Scholar
  71. 71.
    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E (2008) Observation of the spin Seebeck effect. Nature 455:778CrossRefADSGoogle Scholar
  72. 72.
    Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer GEW, Maekawa S, Saitoh E (2010) Spin Seebeck insulator. Nat Mater 9:894CrossRefADSGoogle Scholar
  73. 73.
    Jaworski CM, Yang J, Mack S, Awschalom DD, Heremans JP, Myers RC (2010) Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater 9:898CrossRefADSGoogle Scholar
  74. 74.
    Kirihara A, Uchida K, Kajiwara Y, Ishida M, Nakamura Y, Manako T, Saitoh E, Yorozu S (2011) Spin-current-driven thermoelectric coating. Nat Mater 11:686CrossRefADSGoogle Scholar
  75. 75.
    Wang Z, Sun Y, Wu M, Tiberkevich V, Slavin A (2011) Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys Rev Lett 107:146602CrossRefADSGoogle Scholar
  76. 76.
    Mahan GD (2000) Many particle physics. Kluwer Academic/Plenum, New YorkCrossRefGoogle Scholar
  77. 77.
    Rammer J (2004) Quantum transport theory. Westview Press, Boulder, p 305Google Scholar
  78. 78.
    Sanders DJ, Watson D (1977) Effect of magnon-phonon thermal relaxation on heat transport by magnons. Phys Rev B 15:1489CrossRefADSGoogle Scholar
  79. 79.
    Xiao J, Bauer GEW, Uchida K, Saitoh E, Maekawa S (2010) Theory of magnon-driven spin Seebeck effect. Phys Rev B 81:214418CrossRefADSGoogle Scholar
  80. 80.
    Adachi H, Ohe J, Takahashi S, Maekawa S (2011) Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Phys Rev B 83:094410CrossRefADSGoogle Scholar
  81. 81.
    Ohe J, Adachi H, Takahashi S, Maekawa S (2011) Numerical study on the spin Seebeck effect. Phys Rev B 83:115118CrossRefADSGoogle Scholar
  82. 82.
    Lu L, Sun Y, Jantz M, Wu M (2012) Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer. Phys Rev Lett 108:257202CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations