General Principles of Spin Transistors and Spin Logic Devices

  • Supriyo BandyopadhyayEmail author
  • Marc Cahay
Reference work entry


This chapter provides an overview of the field of spin-based devices, circuits, and architectures for digital information processing. Electron spin – as opposed to electron charge – is used as a classical degree of freedom to encode binary bits, and this approach improves the energy efficiency of information processing. However, there are also disadvantages associated with unreliability, difficulty of reading and writing information, and sometimes the need for cryogenic operation. These issues are discussed exhaustively, pointing the readers to niche applications where spin-based devices may offer some advantage. Both the basic and the applied aspects of spintronic information processing are discussed.


Gate Voltage Spin Polarization Local Magnetic Field Spin Injection NAND Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bandyopadhyay S, Das B, Miller AE (1994) Supercomputing with spin-polarized single electrons in a quantum coupled architecture. Nanotechnology 5:113ADSCrossRefGoogle Scholar
  2. 2.
    Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Develop 5:183MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Landauer R, Keyes RW (1970) Minimal energy dissipation in logic. IBM J Res Develop 14:152CrossRefGoogle Scholar
  4. 4.
    Salahuddin S, Datta S (2007) Interacting systems for self-correcting low-power switching. Appl Phys Lett 90:093503ADSCrossRefGoogle Scholar
  5. 5.
    Cowburn RP, Koltsov DK, Adeyeye AO, Welland ME, Tricker DM (1999) Single domain circular nanomagnets. Phys Rev Lett 83:1042ADSCrossRefGoogle Scholar
  6. 6.
    Datta S, Das B (1990) Electronic analog of the electro-optic modulator. Appl Phys Lett 56:665ADSCrossRefGoogle Scholar
  7. 7.
    Bychkov Yu A, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C 17:6039ADSCrossRefGoogle Scholar
  8. 8.
    Dresselhaus G (1955) Spin-orbit coupling effects in zinc-blende structures. Phys Rev 100:580ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443ADSCrossRefGoogle Scholar
  10. 10.
    Luo J-W, Zhang L, Zunger A (2011) Absence of intrinsic spin-splitting in one-dimensional quantum wires of tetrahedral semiconductors. Phys Rev B 84:121303(R)ADSCrossRefGoogle Scholar
  11. 11.
    Bandyopadhyay S, Cahay M (2004) Alternate spintronic analog of the electro-optic modulator. Appl Phys Lett 85:1814ADSCrossRefGoogle Scholar
  12. 12.
    Cahay M, Bandyopadhyay S (2004) Phase-coherent quantum mechanical spin transport in a weakly disordered quasi one-dimensional channel. Phys Rev B 69:045303ADSCrossRefGoogle Scholar
  13. 13.
    Elliott RJ (1954) Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev 96:266ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Yafet Y (1952) Calculation of the g-factor of metallic sodium. Phys Rev 85:478ADSCrossRefGoogle Scholar
  15. 15.
    D’yakonov MI, Perel’ VI (1971) Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov Phys JETP 33:1053ADSGoogle Scholar
  16. 16.
    D’yakonov MI, Perel’ VI (1972) Spin relaxation of conduction electrons in non-centrosymmetric semiconductors. Sov Phys Solid State 23:3023Google Scholar
  17. 17.
    Bir GL, Aronov AG, Pikus GE (1975) Spin relaxation of electrons scattered by holes. Sov Phys JETP 42:705ADSGoogle Scholar
  18. 18.
    Schliemann J, Egues JC, Loss D (2003) Nonballistic spin field effect transistor. Phys Rev Lett 90:146801ADSCrossRefGoogle Scholar
  19. 19.
    Cartoixá X, Tang DZY, Chang Y-C (2003) A resonant spin lifetime transistor. Appl Phys Lett 83:1462ADSCrossRefGoogle Scholar
  20. 20.
    Shafir E, Shen M, Saikin S (2004) Modulation of spin dynamics in a channel of a nonballistic spin field effect transistor. Phys Rev B 70:241302(R)ADSCrossRefGoogle Scholar
  21. 21.
    Tsymbal E, Mryasov ON, Leclair PR (2003) Spin-dependent tunneling in magnetic tunnel junctions. J Phys Condens Matter 15:R109ADSCrossRefGoogle Scholar
  22. 22.
    Koga T, Nitta J, Takayanagi H, Datta S (2002) Spin filter device based on the Rashba effect using a nonmagnetic resonant tunneling diode. Phys Rev Lett 88:126601ADSCrossRefGoogle Scholar
  23. 23.
    Wan J, Cahay M, Bandyopadhyay S (2006) Can a non-ideal metal ferromagnet inject spin into a semiconductor with 100% efficiency without a tunnel barrier?. J Nanoelectron Optoelectron 1:60CrossRefGoogle Scholar
  24. 24.
    Dowben PA, Skomski R (2004) Are half-metallic ferromagnets half metals?. J Appl Phys 95:7453ADSCrossRefGoogle Scholar
  25. 25.
    Salis G, Wang R, Jiang X, Shelby RM, Parkin SSP, Bank SR, Harris JS (2005) Temperature independence of the spin-injection efficiency of a MgO-based tunnel spin injector. Appl Phys Lett 87:262503ADSCrossRefGoogle Scholar
  26. 26.
    Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molemkamp LW (1999) Injection and detection of a spin-polarized current in a light-emitting diode. Nature (London) 402:787ADSCrossRefGoogle Scholar
  27. 27.
    Hall KC, Flatté ME (2006) Performance of a spin-based insulated gate field effect transistor. Appl Phys Lett 88:162503ADSCrossRefGoogle Scholar
  28. 28.
    Suk SD et al (2005) IEEE Electron Device Meeting (IEDM) technical digest. doi:10.1109/IEDM.2005.1609453, p 717Google Scholar
  29. 29.
    Rodder M (1990) On-off current ratio in p-channel poly-Si MOSFETs – Dependence on hot carrier stress conditions. IEEE Electron Device Lett 11:346ADSCrossRefGoogle Scholar
  30. 30.
    Nitta J, Akazaki T, Takayanagi H, Enoki T (1997) Gate control of spin-orbit interaction in an inverted In(0.53)Ga(0.47)As/In(0.52)Al(0.48)As heterostructure. Phys Rev Lett 78:1335ADSCrossRefGoogle Scholar
  31. 31.
    Kwon JH, Koo HC, Cmang J, Han SH, Eom J (2008) Gate field effect on spin transport signals in a lateral spin valve device. J Korean Phys Soc Pt 1 53:2491CrossRefGoogle Scholar
  32. 32.
    Trivedi A, Bandyopadhyay S, Cahay M (2007) Switching voltage, dynamic power dissipation and on-to-off conductance ratio of a spin field effect transistor. IET Circuit Device Syst 1:395CrossRefGoogle Scholar
  33. 33.
    Pala MG, Governale M, Konig J, Zülicke U (2004) Universal Rashba spin precession of two dimensional electrons and holes. Europhys Lett 65:850ADSCrossRefGoogle Scholar
  34. 34.
    Agnihotri P, Bandyopadhyay S (2010) Analysis of the Datta-Das spin field effect transistor. Physica E 42:1736ADSCrossRefGoogle Scholar
  35. 35.
    Zainuddin ANM, Hong S, Siddiqui L, Datta S (2010) arXiv:cond-mat/1001:1523Google Scholar
  36. 36.
    Koo HC, Kwon JH, Eom J, Chang J, Han SH, Johnson M (2009) Control of spin precession in a spin-injected field effect transistor. Science 325:1515ADSCrossRefGoogle Scholar
  37. 37.
    Sun BY, Zhang P, Wu MW (2011) Voltage controlled spin precession in InAs quantum wells. Semicond Sci Technol 26:075005ADSCrossRefGoogle Scholar
  38. 38.
    Chao CY-P, Chuang SL (1992) Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum-wells. Phys Rev B 46:4110ADSCrossRefGoogle Scholar
  39. 39.
    Eckenberg U, Altarelli M (1985) Subbands and Landau levels in the two-dimensional hole gas at the GaAs-AlxGa1-xAs interface. Phys Rev B 32:3712ADSCrossRefGoogle Scholar
  40. 40.
    Bandyopadhyay S, Cahay M (2005) A spin field effect transistor for low leakage current. Physica E 25:399ADSCrossRefGoogle Scholar
  41. 41.
    Moore GE (1965) Cramming more components onto integrated circuits. Electronics Magazine 38(8):4Google Scholar
  42. 42.
    Bandyopadhyay S, Datta S, Melloch MR (1986) Aharonov-Bohm effect in semiconductor microstructures – Novel device possibilities. Superlat Microstruct 2:539ADSCrossRefGoogle Scholar
  43. 43.
    Appelbaum I, Monsma DJ (2007) Transit time spin field effect transistor. Appl Phys Lett 90:262501ADSCrossRefGoogle Scholar
  44. 44.
    Monsma DJ, Lodder JC, Popma TJA, Dieny B (1995) Perpendicular hot-electron spin-valve effect in a new magnetic-field sensor – The spin valve transistor. Phys Rev Lett 74:5260ADSCrossRefGoogle Scholar
  45. 45.
    Monsma DJ, Vlutters L, Lodder JC (1998) Room temperature-operating spin-valve transistors formed by vacuum bonding. Science 281:407ADSCrossRefGoogle Scholar
  46. 46.
    Huang B, Monsma DJ, Appelbaum I (2007) Experimental realization of a silicon spin field effect transistor. Appl Phys Lett 91:072501ADSCrossRefGoogle Scholar
  47. 47.
    Appelbaum I, Huang B, Monsma DJ (2007) Electronic measurement and control of spin transport in silicon. Nature (Lond) 447:295ADSCrossRefGoogle Scholar
  48. 48.
    Fabian J, Žutić I, Das Sarma S (2004) Magnetic bipolar transistor. Appl Phys Lett 84:85ADSCrossRefGoogle Scholar
  49. 49.
    Flatte ME, Yu ZG, Johnston-Halperin E, Awschalom DD (2003) Theory of semiconductor magnetic bipolar transistors. Appl Phys Lett 82:4740ADSCrossRefGoogle Scholar
  50. 50.
    Flatté ME, Vignale G (2001) Unipolar spin diodes and transistors. Appl Phys Lett 78:1273ADSCrossRefGoogle Scholar
  51. 51.
    Bandyopadhyay S, Cahay M (2005) Are spin junction transistors suitable for signal processing?. Appl Phys Lett 86:133502ADSCrossRefGoogle Scholar
  52. 52.
    Johnson M (1993) Bipolar spin switch. Science 260:320ADSCrossRefGoogle Scholar
  53. 53.
    Johnson M (1994) The all-metal spin transistor. IEEE Spectrum 31:47CrossRefGoogle Scholar
  54. 54.
    Mizushima K, Kinno T, Yamauchi T, Tanaka K (1997) Energy-dependent hot-electron transport across a spin-valve. IEEE Trans Magn 33:3500ADSCrossRefGoogle Scholar
  55. 55.
    LeMinh P, Gokcan H, Lodder JC, Jansen R (2005) Magnetic tunnel transistor with a silicon hot electron emitter. J Appl Phys 98:076111ADSCrossRefGoogle Scholar
  56. 56.
    Jansen R, Gokcan H, van’t Erve OMJ, Postma FM, Lodder JC (2004) Spin-valve transistors with high magnetocurrent and 40 μA output current. J Appl Phys 95:6927ADSCrossRefGoogle Scholar
  57. 57.
    Zeeman P (1897) The effect of magnetization on the nature of light emitted by a substance. Nature (Lond) 55:347ADSCrossRefGoogle Scholar
  58. 58.
    Zhirnov VV, Cavin RK, Hutchby JA, Bourianoff GI (2003) Limits to binary logic switch scaling – A Gedanken model. Proc IEEE 91:1934CrossRefGoogle Scholar
  59. 59.
    Cavin RK, Zhirnov VV, Hutchby JA, Bourianoff GI (2005) Energy barriers, demons and minimum energy operation of electron devices. Fluct Noise Lett 5:C29CrossRefGoogle Scholar
  60. 60.
    Nikonov DE, Bourianoff GI, Gargini P (2006) Power dissipation in spintronic devices out of thermodynamic equilibrium. J Supercond Novel Magn 19:497CrossRefGoogle Scholar
  61. 61.
    Welser JJ, Bourianoff GI, Zhirnov VV, Cavin RK (2008) The quest for the next information processing technology. J Nanopart Res 10:1CrossRefGoogle Scholar
  62. 62.
    Lent CS, Liu M, Lu Y (2006) Bennett clocking of quantum dot cellular automata and the limits to binary logic scaling. Nanotechnology 17:4240ADSCrossRefGoogle Scholar
  63. 63.
    See also the comment on this paper by Zhirnov VV, Cavin RK (2007) Bennett clocking of quantum dot cellular automata and the limits to binary logic scaling. Nanotechnology 18:298001CrossRefGoogle Scholar
  64. 64.
    Molotkov SN, Nazin SS (1995) Single electron spin logical gates. JETP Lett 62:256Google Scholar
  65. 65.
    Agarwal H, Pramanik S, Bandyopadhyay S (2008) Single spin universal Boolean logic gate. New J Phys 10:015001MathSciNetCrossRefGoogle Scholar
  66. 66.
    Rugar D, Budakian R, Mamin HJ, Chui BH (2004) Single spin detection by magnetic resonance force microscopy. Nature (Lond 430:329ADSCrossRefGoogle Scholar
  67. 67.
    Xioa M, Martin I, Yablonovitch E, Jiang HW (2004) Electrical detection of the spin resonance of a single electron in a silicon field effect transistor. Nature (Lond) 430:435ADSCrossRefGoogle Scholar
  68. 68.
    Elzerman JM et al (2004) Single-shot readout of an individual electron spin in a quantum dot. Nature (Lond) 430:431ADSCrossRefGoogle Scholar
  69. 69.
    Bandyopadhyay S (2005) Computing with spins: From classical to quantum computing. Superlat Microstruct 37:77ADSCrossRefGoogle Scholar
  70. 70.
    Bandyopadhyay S, Roychowdhury VP (1996) Computational paradigms in nanoelectronics: Quantum coupled single electron logic and neuromorphic networks. Jpn J Appl Phys Pt 1 35:3350CrossRefGoogle Scholar
  71. 71.
    Schroder DK (1987) Advanced MOS devices. In: Neudeck GW, Pierret RF (eds) Modular series on solid state devices. Addison-Wesley, ReadingGoogle Scholar
  72. 72.
    Kish LB (2002) End of Moore’s law: Thermal (noise) death of integration in micro and nano electronics. Phys Lett A 305:144ADSCrossRefGoogle Scholar
  73. 73.
    Melnikov DV, Leburton J-P (2006) Single-particle state mixing in two-electron double quantum dots. Phys Rev B 73:155301ADSCrossRefGoogle Scholar
  74. 74.
    Zhang XW, Fan WJ, Li SS, Xia JB (2007) Giant and zero electron g-factors of dilute nitride semiconductor nanowires. Appl Phys Lett 90:193111ADSCrossRefGoogle Scholar
  75. 75.
    de Sousa R, Das Sarma S (2003) Phys Rev B 67:033301; Hu X, de Sousa R, Das Sarma S (2003) In: Ono YA, Fujikawa K (eds) Foundations of quantum mechanics in the light of new technology. Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture. World Scientific, SingaporeGoogle Scholar
  76. 76.
    Amasha S, MacLean K, Radu IP, Zumbühl DM, Kastner MA, Hanson MP, Gossard AC (2008) Electrical control of spin relaxation in a quantum dot. Phys Rev Lett 100:046803ADSCrossRefGoogle Scholar
  77. 77.
    Pramanik S, Stefanita C-G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M (2007) Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nat Nanoetch 2:216CrossRefGoogle Scholar
  78. 78.
    Wang WL, Yazyev OV, Meng S, Kaxiras E (2009) Topological frustration in graphene nanoflakes: Magnetic order and spin logic devices. Phys Rev Lett 102:157201ADSCrossRefGoogle Scholar
  79. 79.
    Meurer B, Heitmann D, Ploog K (1992) Single-electron charging of quantum dot atoms. Phys Rev Lett 68:1371ADSCrossRefGoogle Scholar
  80. 80.
    Ciorga M, Sachrajda AS, Hawrylak P, Gould C, Zawadzki P, Jullian S, Feng Y, Wasilewski Z (2000) Addition spectrum of a lateral dot from Coulomb and spin blockade spectroscopy. Phys Rev B 61, R16315ADSCrossRefGoogle Scholar
  81. 81.
    Piero-Ladriere M, Ciorga M, Lapointe J, Zawadzki P, Korukusisnki M, Hawrylak P, Sachrajda AS (2003) Spin-blockade spectroscopy of a two-level artificial molecule. Phys Rev Lett 91:026803ADSCrossRefGoogle Scholar
  82. 82.
    Livermore C, Crouch CH, Westerveldt RM, Campman KL, Gossard AC (1996) The Coulomb blockade in coupled quantum dots. Science 274:1332ADSCrossRefGoogle Scholar
  83. 83.
    Holleitner AW, Blick RH, Huttel AK, Eberl K, Kotthaus JP (2002) Probing and controlling the bonds of an artificial molecule. Science 297:70ADSCrossRefGoogle Scholar
  84. 84.
    Oosterkamp TH, Fujisawa T, van der Wiel WG, Ishibashi K, Hijman RV, Tarucha S, Kouwenhoven LP (1998) Microwave spectroscopy of a quantum dot molecule. Nature (Lond) 395:873ADSCrossRefGoogle Scholar
  85. 85.
    Craig NJ, Taylor JM, Lester EA, Marcus CM, Hanson MP, Gossard AC (2004) Tunable non-local spin control in a coupled quantum dot system. Science 304:565ADSCrossRefGoogle Scholar
  86. 86.
    Hanson R, Witkamp B, Vandersypen LMK, vanBeveren LHW, Elzerman JM, Kouwenhoven LP (2003) Zeeman energy and spin relaxation in a one-electron quantum dot. Phys Rev Lett 91:196802ADSCrossRefGoogle Scholar
  87. 87.
    Petta JR, Johnson AC, Taylor JM, Laird EA, Yacoby A, Lukin MD, Marcus CM, Hanson MP, Gossard AC (2005) Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309:2180ADSCrossRefGoogle Scholar
  88. 88.
    Nowack KC, Koppens FHL, Nazarov YV, Vandersypen LMK (2007) Coherent control of a single electron spin with electric fields. Science 318:5855CrossRefGoogle Scholar
  89. 89.
    Berezovsky J, Mikkelsen MH, Stoltz NG, Coldren LA, Awschalom DD (2008) Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320:5874CrossRefGoogle Scholar
  90. 90.
    Doris B et al. (2002) Technical digest of the IEEE electron device meeting, San FranciscoGoogle Scholar
  91. 91.
    Chikazumi S (1964) Physics of magnetism. Wiley, New YorkGoogle Scholar
  92. 92.
    Gaunt P (1977) Frequency constant for thermal activation of a ferromagnetic domain wall. J Appl Phys 48:3470ADSCrossRefGoogle Scholar
  93. 93.
    Cowburn RP, Welland ME (2000) Room-temperature magnetic quantum cellular automata. Science 287:1466ADSCrossRefGoogle Scholar
  94. 94.
    Alam MT, Siddiq MJ, Bernstein GH, Neimier M, Porod W, Hu XS (2010) On-chip clocking for nanomagnet logic devices. IEEE Trans Nanotech 9:348ADSCrossRefGoogle Scholar
  95. 95.
    Carr WJ (1974) Propagation of magnetic domain-walls by a self-induced current distribution. J Appl Phys 45:394ADSCrossRefGoogle Scholar
  96. 96.
    Berger L (1974) Prediction of a domain-drag effect in uniaxial, non-compensated, ferromagnetic metals. J Phys Chem Solids 35:947ADSCrossRefGoogle Scholar
  97. 97.
    Freitas PP, Berger L (1985) Observation of s-d exchange force between domain-walls and electric-current in very thin permalloy-films. J Appl Phys 57:1266ADSCrossRefGoogle Scholar
  98. 98.
    Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353ADSCrossRefGoogle Scholar
  99. 99.
    Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Mater 159:L1ADSCrossRefGoogle Scholar
  100. 100.
    Yamanouchi M, Chiba D, Matsukura F, Ohno H (2004) Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature (Lond) 428:539ADSCrossRefGoogle Scholar
  101. 101.
    Amiri PK et al (2011) Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions. Appl Phys Lett 98:112507ADSCrossRefGoogle Scholar
  102. 102.
    Fukami S et al. (2009) Digest of technical papers, symposium on VLSI technology, vol 230 Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, USAGoogle Scholar
  103. 103.
    Fashami MS, Atulasimha J, Bandyopadhyay S (2012) Magnetization dynamics, throughput and energy dissipation in a universal multiferroic nanomagnetic logic gate with fan-in and fan-out. Nanotechnology 23:105201ADSCrossRefGoogle Scholar
  104. 104.
    Bennett CH (1982) The thermodynamics of computation – A review. Int J Theor Phys 21:905CrossRefGoogle Scholar
  105. 105.
    Atulasimha J, Bandyopadhyay S (2010) Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets. Appl Phys Lett 97:173105ADSCrossRefGoogle Scholar
  106. 106.
    Brown WF (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677ADSCrossRefGoogle Scholar
  107. 107.
    Spedalieri FM, Jacob AP, Nikonov D, Roychowdhury VP (2011) Performance of magnetic quantum cellular automata and limitations due to thermal noise. IEEE Trans Nanotech 10:537ADSCrossRefGoogle Scholar
  108. 108.
    Roy K, Bandyopadhyay S, Atulasimha J (2013) Binary switching in a ‘symmetric’ potential landscape. Nat Sci Rep 3:3038ADSGoogle Scholar
  109. 109.
    Carlton D, Lambson B, Scholl A, Young A, Ashby P, Dhuey S, Bokor J (2012) Investigation of defects and errors in nanomagnetic logic circuits. IEEE Trans Nanotech 11:560CrossRefGoogle Scholar
  110. 110.
    Salehi-Fashami M, Atulasimha J, Bandyopadhyay S, Munira K, Ghosh A. (2013) Switching of dipole coupled multiferroic nanomagnets in the presence of thermal noise: Reliability of nanomagnetic logic. IEEE Trans Nanotechnol Vol. 12:1206ADSCrossRefGoogle Scholar
  111. 111.
    Csaba G, Porod W (2010) Fourteenth international workshop on computational electronics. IEEE, PiscatawayGoogle Scholar
  112. 112.
    Roy K, Bandyopadhyay S, Atulasimha J (2012) Energy dissipation and switching delay in stress-induced switching of multiferroic nanomagnets in the presence of thermal fluctuations. J Appl Phys 112:023914ADSCrossRefGoogle Scholar
  113. 113.
    Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17:669CrossRefGoogle Scholar
  114. 114.
    Stephen NG (2006) On energy harvesting from ambient vibration. J Sound Vib 293:409ADSCrossRefGoogle Scholar
  115. 115.
    Winkler R (2003) Spin-orbit coupling effects in two-dimensional electron and hole systems, vol 191, Springer tracts in modern physics. Springer, BerlinCrossRefGoogle Scholar
  116. 116.
    Debald S, Emary C (2005) Spin-orbit-driven coherent oscillations in a few-electron quantum dot. Phys Rev Lett 94:226803ADSCrossRefGoogle Scholar
  117. 117.
    Flindt C, Sorensen A, Flensberg K (2006) Spin-photon entangling diode. Phys Rev Lett 97:240501ADSCrossRefGoogle Scholar
  118. 118.
    Moroz AV, Barnes CHW (1999) Effect of spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems. Phys Rev B 60:14272ADSCrossRefGoogle Scholar
  119. 119.
    Hattori K, Okamoto H (2006) Spin separation and spin Hall effect in quantum wires due to lateral-confinement-induced spin-orbit-coupling. Phys Rev B 74:155321ADSCrossRefGoogle Scholar
  120. 120.
    Xing Y, Sun Q-F, Tang L, Hu J (2006) Accumulation of opposite spins on the transverse edges of a two-dimensional electron gas in a longitudinal electric field. Phys Rev B 74:155313ADSCrossRefGoogle Scholar
  121. 121.
    Jiang Y, Hu L (2006) Kinetic magnetoelectric effect in a two-dimensional semiconductor strip due to boundary confinement-induced spin-orbit coupling. Phys Rev B 74:075302ADSCrossRefGoogle Scholar
  122. 122.
    Hew WK et al (2008) Spin-incoherent transport in quantum wires. Phys Rev Lett 101:036801ADSCrossRefGoogle Scholar
  123. 123.
    Crook R et al (2006) Conductance quantization at a half-integer plateau in a symmetric GaAs quantum wire. Science 312:1359ADSCrossRefGoogle Scholar
  124. 124.
    Reilly DJ et al (2002) Density-dependent spin polarization in ultra-low-disorder quantum wires. Phys Rev Lett 89:246801ADSCrossRefGoogle Scholar
  125. 125.
    Kim S, Hashimoto Y, Iye Y, Katsumoto S (2011) arXiv:1102.4648v1Google Scholar
  126. 126.
    Pepper M, and Bird J (2008) J Phys Condens Matter 20:16301Google Scholar
  127. 127.
    Gold A, Calmels L (1996) Valle- and spin-occupancy instability in the quasi-one-dimensional electron gas. Philos Mag Lett 74:33ADSCrossRefGoogle Scholar
  128. 128.
    Bird JP, Ochiai Y (2004) Electron spin polarization in nanoscale constrictions. Science 303:1621CrossRefGoogle Scholar
  129. 129.
    Rokhinson LP, Pfeiffer L, West K (2006) Spontaneous spin polarization in quantum point contacts. Phys Rev Lett 96:156602ADSCrossRefGoogle Scholar
  130. 130.
    Rokhinson LP, Pfeiffer L, West K (2008) Detection of spin polarization in quantum point contacts. J Phys Condens Matter 20:164212ADSCrossRefGoogle Scholar
  131. 131.
    Jaksch P, Yakimenko I, Berggren K-F (2006) From quantum point contacts to quantum wires: Density functional calculations with exchange and correlation effects. Phys Rev B 74:235320ADSCrossRefGoogle Scholar
  132. 132.
    Thomas KJ et al (1996) Possible spin polarization in a one-dimensional electron gas. Phys Rev Lett 77:135ADSCrossRefGoogle Scholar
  133. 133.
    Reilly DJ (2005) Phenomenological model for the 0.7 conductance feature in quantum wires. Phys Rev B 72:033309ADSCrossRefGoogle Scholar
  134. 134.
    Cortes-Huerto R, Ballone P (2010) Spontaneous spin polarization and charge localization in metal nanowires: the role of a geometric constriction. J Phys Condens Matter 22:295302CrossRefGoogle Scholar
  135. 135.
    Shailos A, Shok A, Bird JP, Akis R, Ferry DK, Goodnick SM, Lilly MP, Reno JL, Simmons JA (2006) Linear conductance of quantum point contacts with deliberately broken symmetry. J Phys Condens Matter 18:1715ADSCrossRefGoogle Scholar
  136. 136.
    Chen JC, Lin Y, Lin KT, Ueda T, Koniyma S (2009) Effect of impurity scattering on the quantized conductance of a quasi-one-dimensional quantum wire. Appl Phys Lett 94:01205Google Scholar
  137. 137.
    Liu KM, Juang CH, Umansky V, Hsu SY (2010) Effect of impurity scattering on the linear and nonlinear conductances of quasi-one-dimensional disordered quantum wires by asymmetrically lateral confinement. J Phys Condens Matter 22:395303CrossRefGoogle Scholar
  138. 138.
    Debray P, Rahman SMS, Wan J, Newrock RS, Cahay M, Ngo AT, Ulloa SE, Herbert ST, Muhammad M, Johnson M (2009) All-electrical quantum point contact spin valves. Nat Nanotech 4:759ADSCrossRefGoogle Scholar
  139. 139.
    Wan J, Cahay M, Debray P, Newrock RS (2009) On the physical origin of the 0.5 plateau in the conductance of quantum point contacts. Phys Rev B 80:155440ADSCrossRefGoogle Scholar
  140. 140.
    Wan J, Cahay M, Debray P, Newrock RS (2011) Spin texture of conductance anomalies in quantum point contacts. J Nanoelectron Optoelectron 6:95CrossRefGoogle Scholar
  141. 141.
    Bandyopadhyay S, Cahay M (2005) Proposal for a spintronic femto-Tesla magnetic field sensor. Physica E 27:98–103ADSCrossRefGoogle Scholar
  142. 142.
    Wan J, Cahay M, Bandyopadhyay S (2007) A digital switch and femto-Tesla magnetic field sensor based on Fano resonance in a spin field effect transistor. J Appl Phys 102:034301ADSCrossRefGoogle Scholar
  143. 143.
    Atulasimha J, Bandyopadhyay S (2011) Proposal for an ultrasensitive spintronic strain and stress sensor. J Phys D Appl Phys 44:205301ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Electrical and Computer Engineering, School of Electronics and Computing SystemsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations