Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory

  • A. Anane
  • B. Dlubak
  • Hiroshi Idzuchi
  • H. Jaffres
  • M-B. Martin
  • Y. Otani
  • P. Seneor
  • Albert FertEmail author
Reference work entry


Carbon Nanotubes and graphene are attractive for spintronics as a long spin lifetime can be expected from the small spin-orbit interaction in carbon and the absence of nuclear spins for the main isotope. A second interest comes from their sensitivity to proximity effects that can be used to introduce local magnetic or spin-orbit interactions for the manipulation of spin currents. In this review, written in 2012 and updated in 2015, we have mainly discussed the problems of spin lifetime and spin diffusion length rather than those of magnetism and spin-orbit more recently investigated. For graphene the experimental spin lifetimes and spin diffusion lengths can be relatively long (typically above 1 ns and 10 μm) if the conduction channel is protected from external influences and separated from the electrodes by large contact resistances.


Spin Relaxation Spin Current Spin Transport Spin Signal Hanle Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations




Bilayer graphene


Boron nitride


Complementary metal-oxide-semiconductor


Carbon nanotube


Chemical vapor deposition




Epitaxial graphene




Few-layer graphene


GIANT magnetoresistance


international technology roadmap for semiconductors




Lateral spin valve


Multilayer epitaxial graphene


Multilayer graphene




Multiwall carbon nanotube


Neutrality point




Room temperature




Singlewall nanotube


  1. 1.
    Charlier JC, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79(2):677–732CrossRefADSGoogle Scholar
  2. 2.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2010) The electronic properties of graphene. Rev Mod Phys 82(3):2673–2700CrossRefGoogle Scholar
  3. 3.
    Novoselov KS, Geim AK, Morosov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefADSGoogle Scholar
  4. 4.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, De Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRefADSGoogle Scholar
  5. 5.
    de Heer WA, Berger C, Wu X, Sprinkle M, Hu Y, Ruan M, Stroscio JA, First PN, Haddon R, Piot B, Faugeras C, Potemski M, Moon JS (2010) Epitaxial graphene electronic structure and transport. J Phys D Appl Phys 43(37):374007CrossRefGoogle Scholar
  6. 6.
    Jozsa C, van Wees B (2011) Graphene spintronics. In: Tsymbal EY, Zutic I (eds) Handbook of spin transport and magnetism. CRC Press, Boca Raton, pp 579–598CrossRefGoogle Scholar
  7. 7.
    Tsukagoshi K, Alphenaar BW, Ago H (1999) Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401(6753):572–574CrossRefADSGoogle Scholar
  8. 8.
    Zhao B, Mönch I, Vinzelberg H, Mühl T, Schneider CM (2002) Spin-coherent transport in ferromagnetically contacted carbon nanotubes. Appl Phys Lett 80(17):3144–3146CrossRefADSGoogle Scholar
  9. 9.
    Jensen A, Hauptmann JR, Nygård J, Lindelof PE (2005) Magnetoresistance in ferromagnetically contacted single-wall carbon nanotubes. Phys Rev B 72(3):035419–035423CrossRefADSGoogle Scholar
  10. 10.
    Sahoo S, Kontos T, Schönenberger C, Sürgers C (2005) Electrical spin injection in multiwall carbon nanotubes with transparent ferromagnetic contacts. Appl Phys Lett 86(11):112109–112111CrossRefADSGoogle Scholar
  11. 11.
    Tombros N, van der Molen SJ, van Wees BJ (2006) Separating spin and charge transport in single-wall carbon nanotubes. Phys Rev B 73(23):233403–233406CrossRefADSGoogle Scholar
  12. 12.
    Aurich H, Baumgartner A, Freitag F, Eichler A, Trbovic J, Schonenberger C (2010) Permalloy-based carbon nanotube spin-valve. Appl Phys Lett 97(15):153116–153118CrossRefADSGoogle Scholar
  13. 13.
    Hueso LE, Pruneda JM, Ferrari V et al (2007) Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445(7126):410–413CrossRefADSGoogle Scholar
  14. 14.
    Mieville L, Worledge D, Geballe TH, Contreras R, Char K (1998) Transport across conducting ferromagnetic oxide/metal interfaces. Appl Phys Lett 73(12):1736–1738CrossRefADSGoogle Scholar
  15. 15.
    Hill EW, Geim AK, Novoselov K, Schedin F, Blake P (2006) Graphene spin valve devices. IEEE Trans Magnet 42(10):2694–2696CrossRefADSGoogle Scholar
  16. 16.
    Tombros N, Jozsa C, Popinciuc M, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448(7153):571–574CrossRefADSGoogle Scholar
  17. 17.
    Cho S, Chen YF, Fuhrer M (2007) Gate-tunable graphene spin valve. Appl Phys Lett 91(12):123105–123107; Ohishi M, Shiraishi M, Nouchi R, Nozaki T, Shinjo T, Suzuki Y (2007) Spin injection into a graphene thin film at room temperature. Jpn J Appl Phys 46(25):L605–L607Google Scholar
  18. 18.
    Popinciuc M, Jozsa C, Zomer PJ, Tombros N, Veligura A, Jonkman HT, van Wees BJ (2009) Electronic transport in graphene field-effect transistors. Phys Rev 80(21):214427–214439CrossRefGoogle Scholar
  19. 19.
    Jedema F, Heersche HB, Filip AT, Baselmans JJA, and Van Wees B (2002) Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416:713–716Google Scholar
  20. 20.
    Han W, Pi K, McCreary KM, Li Y, Wong JI, Swartz AG, Kawakami RK (2010) Tunneling spin injection into single layer grapheme. Phys Rev Lett 105(16):167202–167205CrossRefADSGoogle Scholar
  21. 21.
    Han W, Kawakami RK (2011) Spin-relaxation in single-layer and bilayer grapheme. Phys Rev Lett 107(4):047207–047210CrossRefADSGoogle Scholar
  22. 22.
    Avsar A, Yang TY, Bae S, Balakrishnan J, Volmer F, Jaiswal M, Yi Z, Ali SR, Guntherodt G, Hong BH, Beschoten B, Ozyilmaz B (2011) Toward wafer scale fabrication of grapheme based spin valve devices. Nano Lett 11(6):2363–2368CrossRefADSGoogle Scholar
  23. 23.
    Maassen T, van den Berg JJ, Ijbema N, Fromm F, Seyller T, Yakimova R, van Wees BJ (2012) Long spin relaxation times in wafer scale epitaxial graphene on SiC(001). Nano Lett 12(3):1498–1502CrossRefADSGoogle Scholar
  24. 24.
    Dlubak B, Seneor P, Anane A, Deranlot C, Servet B, Xavier S, Sprinkle M, Berg C, De Heer WA, Petroff F, Fert A (2012) Nat Phys 8:557–561Google Scholar
  25. 25.
    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer WA, Lanzara A, Conrad E (2009) First direct observation of a nearly ideal grapheme band structure. Phys Rev Lett 103(22):226803–226806CrossRefADSGoogle Scholar
  26. 26.
    Elliott RJ (1954) Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev 96(12):266–279zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Dyakonov MI, Perel VI (1971) Possibility of orienting electron spins with current. Soviet Phys JETP Lett 13(11):467–469ADSGoogle Scholar
  28. 28.
    Zomer PJ, Guimaraes MHD, Tombros N, and Van Wees BJ (2012) Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Phys Rev B 86:1614161–1614164Google Scholar
  29. 29.
    Guimaraes MHD, Zomer PJ, Ingla-Aynés J, Brant JC, Tombros N, and Van Wees BJ (2014) Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field. Phys Rev Lett 113:086602–086606Google Scholar
  30. 30.
    Drögeler M, Volmer F, Wolter M, Terrés B, Watanabe K, Tanigushi T, Güntherodt, Stampfer C Beschoten B (2014) Nanosecond spin lifetimes in ingle- anf few-layer graphene-hBN heterostructures at room temperature. Nano Lett 14:6050–6055Google Scholar
  31. 31.
    Volmer F, Drögeler F, Maynicke E, von den Driesch N, Boschen ML, Güntherodt G, Beschoten B (2013) Role of MgO barriers for spin and charge transport in Co/Mg/graphene nonlocal spin-valve devices. Phys Rev B 88:161405–161409Google Scholar
  32. 32.
    Kalamakar MV, Dankert A, Bergsten J, Ive T, Dash SP (2014) Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride. Scientific Report 4:6146–6152Google Scholar
  33. 33.
    Idzuchi H, Fukuma Y, Takahashi S, Maekawa S, Otani Y (2014) Effect of anisotropic spin absorption on the Hanle effect in lateral spin valves. Phys Rev B 89:081308–081312Google Scholar
  34. 34.
    Maassen T, Vera-Marun IJ, Guimarães MHD, van Wees BJ (2012) Contact-induced spin relaxation in Hanle spin precession measurements. Phys Rev B 86:2354081–2354088Google Scholar
  35. 35.
    Sosenko E, Wei H, Aji V (2014) Effect of contacts on spin lifetime measurements in graphene. Phys Rev B 89:245436Google Scholar
  36. 36.
    Idzuchi H, Fert A, Otani Y (2015) Revisiting the measurement of the spin relaxation time in graphene-based devices. Phys Rev B 91:241407(R)Google Scholar
  37. 37.
    Fukuma Y, Wang L, Idzuchi H, Takahashi S, Maekawa S, Otani Y (2011) Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat Mater 10(7):527–531CrossRefADSGoogle Scholar
  38. 38.
    Jaffrès H, George JM, Fert A (2010) Spin transport in multiterminal devices: large spin signals in devices with confined geometry. Phys Rev B 82(14):140408(R)–140411(R)CrossRefADSGoogle Scholar
  39. 39.
    van Son PC, van Kempen H, Wyder P (1987) Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Phys Rev Lett 58(21):2271–2273CrossRefADSGoogle Scholar
  40. 40.
    Johnson M and Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55(17):1790–1793Google Scholar
  41. 41.
    Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48(10):7099–7113CrossRefADSGoogle Scholar
  42. 42.
    Takahashi S, Maekawa S (2006) Spin injection and transport in magnetic structures. Phys C 437–438:309–313CrossRefGoogle Scholar
  43. 43.
    Fert A, Jaffrès H (2001) Conditions for efficient spin injection. Phys Rev B 64:184420–184429CrossRefADSGoogle Scholar
  44. 44.
    Abanin DA, Morozov SV, Ponomarenko LA, Gorbachev RV, Mayorov AS, Katsnelson MI, Watanabe K, Taniguchi T, Novoselov KS, Levitov LS, Geim AK (2011) Giant nonlocality near the Dirac point in graphene. Science 332(6027):328–330Google Scholar
  45. 45.
    Vera-Marun IJ, Ranjan V, van Wees BJ (2011) Nonlinear interaction of spin and charge currents in graphene. Phys Rev B 84(24):241408(R)–241411(R)CrossRefADSGoogle Scholar
  46. 46.
    Dery H, Huang M, Song Y, Kawakami R, Shi J, Krivorotov I (2011) Reconfigurable nnaoelectronics using graphene based spintronic logic gates. ArXiv:1101.1497v2Google Scholar
  47. 47.
    2011 International Technology Roadmap for Semiconductors,
  48. 48.
    Behin-Aein B, Datta D, Salahuddin S, Datta S (2010) Proposal for an all-spin logic device with built-in memory. Nat Nanotechnol 5:266–270CrossRefADSGoogle Scholar
  49. 49.
    Castro Neto AH, Guinea F (2009) Impurity-induced spin-orbit coupling in graphene. Phys Rev Lett 103(2):026804–026807Google Scholar
  50. 50.
    Uchoa B, Kotov VN, Peres NMR, Castro Neto AH (2008) Localized magnetic states in graphene. Phys Rev Lett 101:026805-026808Google Scholar
  51. 51.
    Balakrishnan J, Koon GKW, Jaiswal1 M, A. H, Castro Neto AH, Özyilmaz B (2013) Colossal enhancement of spin–orbit coupling in weakly hydrogenated graphene. Nature Phy 9:284–287Google Scholar
  52. 52.
    Balakrishnan J, Koon GKW, Avsar A, Ho Y, Lee JH, Jaiswal, Baeck SJ, Ahn JH, Ferreira A, Cazlilla MA, Castro Neto AH, Özyilmaz B (2013) Giant spin Hall effect in graphen grown by chemical vapour deposition. Nature Comm 5:4748–4752Google Scholar
  53. 53.
    Ferreira A, Rappoport TG, Cazalilla MA, Castro Neto AH (2014) Extrinsic spin Hall effect induced by resonant skew scattering in graphene. Phys Rev Lett 112:066601–066605Google Scholar
  54. 54.
    Wunsch B, Stauber T, Sols F, Guinea F (2008) Interactions and magnetism in graphene boundary states. Phys Rev Lett 101:036803–036807CrossRefADSGoogle Scholar
  55. 55.
    Munoz-Rojas F, Fernandez-Rossier J, Palacios JJ (2009) Giant magnetoresistance in ultrasmall graphene based devices. Phys Rev Lett 102:136810–136814CrossRefADSGoogle Scholar
  56. 56.
    Yang HX, Chshiev M, Boulhavalov DW, Waintal X, Roche S (2011) Inducing and optimizing magnetism in graphene. Phys Rev B 84:214404–214413CrossRefADSGoogle Scholar
  57. 57.
    Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73:056501–056516CrossRefADSGoogle Scholar
  58. 58.
    San-Jose P, Prada E, McCann E, Schomerus H (2009) Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Phys Rev Lett 102:247204–247208CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Anane
    • 1
    • 2
  • B. Dlubak
    • 1
    • 2
  • Hiroshi Idzuchi
    • 3
  • H. Jaffres
    • 1
    • 2
  • M-B. Martin
    • 1
    • 2
  • Y. Otani
    • 3
    • 4
  • P. Seneor
    • 1
    • 2
  • Albert Fert
    • 1
    • 2
    Email author
  1. 1.Unité Mixte de Physique CNRS/ThalesPalaiseauFrance
  2. 2.Université Paris SudOrsayFrance
  3. 3.Center for Emergent Matter Science, RIKEN2-1 Hirosawa, WakoJapan
  4. 4.Institute for Solid State Physics, University of TokyoKashiwaJapan

Personalised recommendations