Si Based Magnetic Semiconductors

  • John F. DiTusaEmail author
Reference work entry


The efforts over the past decade to identify and characterize magnetic semiconducting systems that would be compatible with present-day silicon technologies are reviewed. Investigations that have explored transition metal doping of the group IV semiconductors silicon and germanium are discussed along with intermetallic compounds such as silicides and germanides that may play the role of a magnetic semiconducting source of polarized electrons. Thin films and nanostructures of these materials have been grown by a number of synthesis techniques, and the resulting structural properties, including the important issue of homogeneity of dopants, are critically surveyed. The resulting magnetic and carrier transport properties are also reviewed.


Curie Temperature Magnetic Semiconductor Spin Current Schottky Barrier Height High Curie Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations




Chemical vapor deposition


Field cooled






High-resolution transmission electron microscopy


Molecular beam epitaxy


Magnetic force microscopy


Pulsed laser deposition


Reactive deposition epitaxy


Solid-phase epitaxy


Superconducting quantum interference device


Scanning transmission electron microscopy


Scanning tunneling microscopy


Curie temperature


Transmission electron microscopy


Transition metal


X-ray diffraction


Zero field cooled




Bohr magneton




  1. 1.
    Cheng JL, Wu MW, Fabian J (2010) Theory of the spin relaxation of conduction electrons in silicon. Phys Rev Lett 104:016601ADSCrossRefGoogle Scholar
  2. 2.
    Appelbaum I, Huang BQ, Monsma DJ (2007) Electronic measurement and control of spin transport in silicon. Nature 447:295–298ADSCrossRefGoogle Scholar
  3. 3.
    Huang BQ, Monsma DJ, Appelbaum I (2007) Coherent spin transport through a 350 micron thick silicon wafer. Phys Rev Lett 99:177209ADSCrossRefGoogle Scholar
  4. 4.
    Huang BQ, Jang H-J, Appelbaum I (2008) Geometric dephasing-limited Hanle effect in long-distance lateral silicon spin transport devices. Appl Phys Lett 93:162508ADSCrossRefGoogle Scholar
  5. 5.
    Lepine DJ (1970) Spin resonance of localized and delocalized electrons in phosphorus-doped silicon between 20 and 30 degrees K. Phys Rev B 2:24292439CrossRefGoogle Scholar
  6. 6.
    Lancaster G, van Wyk JA, Schneider EE (1964) Spin-lattice relaxation of conduction electrons in silicon. Proc Phys Soc 84:19–24ADSCrossRefGoogle Scholar
  7. 7.
    Ochiai Y, Matsuura E (1976) ESR in heavily doped n-type silicon near a metal-nonmetal transition. Phys Status Solidi A 38:243–252ADSCrossRefGoogle Scholar
  8. 8.
    Quirt JD, Marko JR (1972) Absolute spin susceptibilities and other ESR parameters of heavily doped n-type silicon. 1. Metallic samples. Phys Rev B 5:1716–1728ADSCrossRefGoogle Scholar
  9. 9.
    Pifer JH (1975) Microwave conductivity and conduction-electron spin-resonance linewidth of heavily doped Si:P and Si:As. Phys Rev B 12:4391–4402ADSCrossRefGoogle Scholar
  10. 10.
    Kennedy TA, Pifer JH (1975) Electron-paramagnetic-resonance study of metallic Si-P with iron. Phys Rev B 11:2017ADSCrossRefGoogle Scholar
  11. 11.
    Ue H, Maekawa S (1971) Electron-spin-resonance studies of heavily phosphorus-doped silicon. Phys Rev B 3:4232–4238ADSCrossRefGoogle Scholar
  12. 12.
    Fabian J, Matos-Abiague A, Ertler C, Stano P, Zutic I (2007) Semiconductor spintronics. Acta Phys Slovaca 57:565–907ADSCrossRefGoogle Scholar
  13. 13.
    Huang B, Monsma DJ, Appelbaum I (2007) Experimental realization of a silicon spin field-effect transistor. Appl Phys Lett 91:072501ADSCrossRefGoogle Scholar
  14. 14.
    Lu Y, Li J, Appelbaum I (2011) Spin-polarized transient electron trapping in phosphorus-doped silicon. Phys Rev Lett 106:217202ADSCrossRefGoogle Scholar
  15. 15.
    Lu Y, Appelbaum I (2010) Reverse Schottky-asymmetry spin current detectors. Appl Phys Lett 97:162501ADSCrossRefGoogle Scholar
  16. 16.
    Kikkawa JM, Awschalom DD (1998) Resonant spin amplification in n-type GaAs. Phys Rev Lett 80:4313–4316ADSCrossRefGoogle Scholar
  17. 17.
    Schmidt G, Ferrand D, Molenkamp W, Filip AT, van Wees BJ (2000) Fundamental obstacle for electrical spin injection from into a diffusive semiconductor. Phys Rev B 62:R4790–R4793Google Scholar
  18. 18.
    Kiziroglou ME (2005) Electrodeposition of Ni-Si Schottky barriers. IEEE Trans Magn 41:2639–2641ADSCrossRefGoogle Scholar
  19. 19.
    Maeda Y, Hamaya K, Yamada S, Ando Y, Yamane K, Miyao M (2010) High-quality epitaxial CoFe/Si(111) heterostructures fabricated by low-temperature molecular beam epitaxy. Appl Phys Lett 97:192501ADSCrossRefGoogle Scholar
  20. 20.
    Kiziroglou ME, Li X, Zhukov AA, de Groot PAJ, de Groot CH (2008) Thermionic field emission at electrodeposited Ni-Si Schottky barriers. Solid State Electron 52:1032–1038ADSCrossRefGoogle Scholar
  21. 21.
    Lin Y-C, Chen Y, Shaios A, Huang Y (2010) Detection of spin polarized carrier in silicon nanowire with single crystal MnSi as magnetic contacts. Nano Lett 10:2281–2287ADSCrossRefGoogle Scholar
  22. 22.
    Uhrmann T, Dimopoulos T, Kovacs A, Kohn A, Weyers S, Paschen U, Smoliner J, Bruckl H (2009) Evaluation of Schottky and MgO-based tunnelling diodes with different ferromagnets for spin injection in n-Si. J Phys D Appl Phys 42:145114ADSCrossRefGoogle Scholar
  23. 23.
    Min BC, Motohashi K, Lodder C, Jansen R (2006) Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nat Mater 5:817–822ADSCrossRefGoogle Scholar
  24. 24.
    Patel RS, Dash SP, de Jong MP, Janson R (2009) Magnetic tunnel contacts to silicon with low-work-function ytterbium nanolayers. J Appl Phys 106:016107ADSCrossRefGoogle Scholar
  25. 25.
    Manyala N, Sidis Y, DiTusa JF, Aeppli G, Young DP, Fisk Z (2004) Large anomalous Hall effect in a silicon-based magnetic semiconductor. Nat Mater 3:255–262ADSCrossRefGoogle Scholar
  26. 26.
    Zutic I, Fabian J, Erwin SC (2006) Spin injection and detection in silicon. Phys Rev Lett 97:026602ADSCrossRefGoogle Scholar
  27. 27.
    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) (Ga, Mn)as: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363–365ADSCrossRefGoogle Scholar
  28. 28.
    Olejnik K, Owen MHS, Novak V, Masek J, Irvine AC, Wunderlich J, Jungwirth T (2008) Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga, Mn)as: a surface oxide control study. Phys Rev B 78:054403ADSCrossRefGoogle Scholar
  29. 29.
    Zhang FM, Zeng Y, Gao J, Liu XC, Wu XS, Du YW (2004) Ferromagnetism in Mn-doped silicon. J Magn Magn Mater 282:216–218ADSCrossRefGoogle Scholar
  30. 30.
    Bolduc M, Awo-Affouda C, Stollenwerk A, Huang MB, Ramos FG, Agnello G, LaBella VP (2005) Above room temperature ferromagnetism in Mn-ion implanted Si. Phys Rev B 71:033302ADSCrossRefGoogle Scholar
  31. 31.
    Jiang Y, Liu JF, Sun Y, Xu PS, Sun ZH, Pan ZY, Yan WS, Wei SQ (2008) Structural study of MnxSi1−x magnetic semiconductor thin films. Acta Phys Sin 57:4322–4327Google Scholar
  32. 32.
    Nakayama H, Ohta H, Kulatov E (2001) Growth and properties of super-doped Si: Mn for spin-photonics. Phys B 302:419–424ADSCrossRefGoogle Scholar
  33. 33.
    Bolduc M, Awo-Affouda C, Ramos FG, LaBella VP (2006) Annealing temperature effects on the structure of ferromagnetic Mn-implanted Si. J Vac Sci Technol 24:1648–1651CrossRefGoogle Scholar
  34. 34.
    Awo-Affouda C, Bolduc M, Huang MB, Ramos FG, Dunn KA, Theil B, Agnello G, LaBella VP (2006) Observation of crystallite formation in ferromagnetic Mn-implanted Si. J Vac Sci Technol A 24:1644–1647CrossRefGoogle Scholar
  35. 35.
    Zhou S, Potzger K, Zhang G, Mucklich A, Eichhorn F, Schnell N, Grotzschel R, Schmidt B, Skorupa W, Helm M, Fassbender J, Geiger D (2007) Structural and magnetic properties of Mn-implanted Si. Phys Rev B 75:085203ADSCrossRefGoogle Scholar
  36. 36.
    Bak-Misiuk J, Misiuk A, Romanowski P, Barcz A, Jakiela R, Dynowska E, Domagala JZ, Caliebe W (2009) Stress-mediated redistribution of Mn in annealed Si:Mn. Mater Sci Eng B 159–160:99–102CrossRefGoogle Scholar
  37. 37.
    Woodbury HH, Ludwig GW (1960) Spin resonance of transition metals in silicon. Phys Rev 117:102ADSCrossRefGoogle Scholar
  38. 38.
    Higgins JM, Schmitt AL, Guzei IA, Jin S (2008) Higher manganese silicide nanowires of nowotny chimney ladder phase. J Am Chem Soc 130:16086CrossRefGoogle Scholar
  39. 39.
    Hu J, Kurokawa T, Suemasu T, Takahara S, Itakura M, Tatsuoka H (2009) Growth of manganese silicide layers on Si substrates using MnCl(2) source. Phys Status Solidi A 206:233–237ADSCrossRefGoogle Scholar
  40. 40.
    Liu HJ, Owen JHG, Miki K, Renner C (2011) Manganese silicide nanowires on Si(001). J Phys Condens Matter 23:172001ADSCrossRefGoogle Scholar
  41. 41.
    Gottlieb U, Sulpice A, Lambert-Andron B, Laborde O (2003) Magnetic properties of single crystalline Mn4Si7. J Alloy Comp 361:13–18CrossRefGoogle Scholar
  42. 42.
    Men’shov VN, Tugushev VV, Caprara S (2010) Spin-fluctuation mediated high-temperature ferromagnetism in Si:Mn dilute magnetic semiconductors. Eur Phys J B 77:337–343ADSCrossRefGoogle Scholar
  43. 43.
    Yabuuchi S, Ono Y, Nagase M, Kageshima H, Fujiwara A, Ohta E (2008) Ferromagnetism of manganese-silicide nanoparticles in silicon. Jpn J Appl Phys 47:4487ADSCrossRefGoogle Scholar
  44. 44.
    Zhang ZZ, Partroens B, Chang K, Peeters FM (2008) First-principles study of transition metal impurities in Si. Phys Rev B 77:155201ADSCrossRefGoogle Scholar
  45. 45.
    Chen H, Zhu WG, Kaxiras E, Zhang ZY (2009) Optimization of Mn doping in group-IV-based dilute magnetic semiconductors by electronic codopants. Phys Rev B 79:235202ADSCrossRefGoogle Scholar
  46. 46.
    Zhu WG, Zhang ZY, Kaxiras E (2008) Dopant-assisted concentration enhancement of substitutional Mn in Si and Ge. Phys Rev Lett 100:027205ADSCrossRefGoogle Scholar
  47. 47.
    Ye J, Jiang Y, Liu QH, Yao T, Pan ZY, Oyanagi H, Sun ZH, Yan WS, Wei SQ (2009) Cosputtered Mn-doped Si thin films studied by x-ray spectroscopy. J Appl Phys 106:103517ADSCrossRefGoogle Scholar
  48. 48.
    Wu HW, Tsai CJ, Chen LJ (2007) Room temperature ferromagnetism in Mn+-implanted Si nanowires. Appl Phys Lett 90:043121ADSCrossRefGoogle Scholar
  49. 49.
    Ko V, Teo KL, Liew T, Chong TC, MacKenzie M, MacLaren I, Chapman JN (2008) Origins of ferromagnetism in transition-metal doped Si. J Appl Phys 104:033912ADSCrossRefGoogle Scholar
  50. 50.
    Durgun E, Akman N, Ciraci S (2008) Functionalization of silicon nanowires with transition metal atoms. Phys Rev B 78:195116ADSCrossRefGoogle Scholar
  51. 51.
    Giorgi G, Cartoixa X, Sgamellotti A, Rurali R (2008) Mn-doped silicon nanowires: first-principles calculations. Phys Rev B 78:115327ADSCrossRefGoogle Scholar
  52. 52.
    Durgun E, Cakir D, Aikman N, Ciraci S (2007) Half-metallic silicon nanowires: first-principles calculations. Phys Rev Lett 99:256806ADSCrossRefGoogle Scholar
  53. 53.
    Xu Q, Li JB, Li SS, Xia JB (2008) The formation and electronic structures of 3d transition-metal atoms doped in silicon nanowires. J Appl Phys 104:084307ADSCrossRefGoogle Scholar
  54. 54.
    Singh AK, Kumar V, Kawazoe Y (2004) Metal encapsulated nanotubes of silicon and germanium. J Mater Chem 14:555–563CrossRefGoogle Scholar
  55. 55.
    Wang J, Liu Y, Liu YC (2010) Magnetic silicon fullerene. Phys Chem Chem Phys 12:11428CrossRefGoogle Scholar
  56. 56.
    Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) (1990) Binary phase diagrams, 2nd edn. ASM International, Materials Park, publisher Scott WW JrGoogle Scholar
  57. 57.
    Takizawa H, Sato T, Endo T, Shimada M (1988) High-pressure synthesis and electrical and magnetic-properties of MnGe and CoGe with the cubic B20 structure. J Solidi Status Chem 73:40–46ADSCrossRefGoogle Scholar
  58. 58.
    Park YD, Hanbicki AT, Erwin SC, Hellberg CS, Sullivan JM, Mattson JE, Ambrose TF, Wilson A, Spanos G, Joniker BT (2002) A group-IV ferromagnetic semiconductor: MnxGe1−x. Science 295:651–654ADSCrossRefGoogle Scholar
  59. 59.
    Cho S, Choi S, Hong SC, Kim Y, Ketterson JB, Kim B-J, Kim YC, Jung J-H (2002) Ferromagnetism in Mn-doped Ge. Phys Rev B 66:033303ADSCrossRefGoogle Scholar
  60. 60.
    Yamada N, Maeda K, Usami Y, Ohoyama T (1986) Magnetic-properties of intermetallic compound Mn11Ge8. J Phys Soc Jpn 55:3721–3724ADSCrossRefGoogle Scholar
  61. 61.
    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y (2011) Large topological Hall effect in a short-period helimagnet MnGe. Phys Rev Lett 106:156603ADSCrossRefGoogle Scholar
  62. 62.
    Tawara Y, Sato K (1963) On magnetic anisotropy of single crystal of Mn5Ge3. J Phys Soc Jpn 18:773–777ADSCrossRefGoogle Scholar
  63. 63.
    Kang J-S, Kim G, Wi SC, Lee SS, Choi S, Cho S, Han SW, Kim KH, Song HJ, Shin HJ, Sekiyama A, Kasai S, Suga S, Min BI (2005) Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductors. Phys Rev Lett 94:147202ADSCrossRefGoogle Scholar
  64. 64.
    Li AP, Wendelken JF, Shen J, Feldman LC, Thompson JR, Weitering HH (2005) Magnetism in MnxGe1−x semiconductors mediated by impurity band carriers. Phys Rev B 72:195205ADSCrossRefGoogle Scholar
  65. 65.
    Bougeard D, Ahlers S, Trampert A, Sircar N, Abstreiter G (2006) Clustering in a precipitate-free GeMn magnetic semiconductor. Phys Rev Lett 97:237202ADSCrossRefGoogle Scholar
  66. 66.
    Guo S, Young DP, Macaluso RT, Browne DA, Henderson NL, Chan JY, Henry LL, DiTusa JF (2010) Magnetic and thermodynamic properties of cobalt-doped iron pyrite: Griffiths phase in a magnetic semiconductor. Phys Rev B 81:144423ADSCrossRefGoogle Scholar
  67. 67.
    Guo S, Young DP, Macaluso RT, Browne DA, Henderson NL, Chan JY, Henry LL, DiTusa JF (2008) Discovery of the Griffiths phase in the itinerant magnetic semiconductor Fe1−xCoxS2. Phys Rev Lett 100:017209ADSCrossRefGoogle Scholar
  68. 68.
    Gunnella R, Morresi L, Pinto N, Di Cicco A, Ottaviano L, Passacantando M, Verna AM, Impellizzeri G, Irrera A, d’Acapito F (2010) Localization of the dopant in Ge: Mn diluted magnetic semiconductors by x-ray absorption at the Mn K edge. J Phys Condens Matter 22:216006ADSCrossRefGoogle Scholar
  69. 69.
    Tsui F, He L, Ma L, Tkachuk A, Chu YS, Nakjima K, Chikyow T (2003) Novel germanium-based magnetic semiconductors. Phys Rev Lett 91:177203ADSCrossRefGoogle Scholar
  70. 70.
    Collins BA, Chu YS, He L, Zhong Y, Tsui F (2008) Dopant stability and strain states in Co and Mn-doped Ge (001) epitaxial films. Phys Rev B 77:193301ADSCrossRefGoogle Scholar
  71. 71.
    Zeng C, Zhang ZY, van Benthem K, Chisholm MF, Weitering HH (2008) Optimal doping control of magnetic semiconductors via subsurfactant epitaxy. Phys Rev Lett 100:066101ADSCrossRefGoogle Scholar
  72. 72.
    Jamet M, Barski A, Devillers T, Poydenot V, Dujardin R, Bayle-Guillemaud P, Rothman J, Bellet-Amalric E, Marty A, Cibert J, Mattana R, Tatarenko S (2006) High-Curie-temperature ferromagnetism in self-organized Ge1−xMnx nanocolumns. Nat Mater 5:653–659ADSCrossRefGoogle Scholar
  73. 73.
    Bougeard D, Sircar N, Ahlers S, Lang V, Abstreiter G, Trampert A, LeBeau JM, Stemmer S, Saxey DW, Cerezo A (2009) Ge1−xMnx clusters: central structural and magnetic building blocks of nanoscale wire-like self-assembly in a magnetic semiconductor. Nano Lett 9:3743–3748CrossRefGoogle Scholar
  74. 74.
    Jain A, Jamet M, Barski A, Devillers T, Porret C, Bayle-Guillemaud P, Gambarelli S, Maurel V, Desfonds G (2010) Investigation of magnetic anisotropy of (Ge, Mn) nanocolumns. Appl Phys Lett 97:202502ADSCrossRefGoogle Scholar
  75. 75.
    Wang KL, Zhao Z, Khitun A (2008) Spintronics for nanoelectronics and nanosystems. Thin Solid Films 517:184–190ADSCrossRefGoogle Scholar
  76. 76.
    Majumdar S, Das AK, Ray SK (2009) Magnetic semiconducting diode of p-Ge1−xMnx/n-Ge layers on silicon substrate. Appl Phys Lett 94:122505ADSCrossRefGoogle Scholar
  77. 77.
    Bokacheva L, Teizer W, Hellman F, Dynes RC (2004) Variation of the density of states in amorphous GdSi at the metal-insulator transition. Phys Rev B 69:235111ADSCrossRefGoogle Scholar
  78. 78.
    Teizer W, Hellman F, Dynes RC (2000) Magnetic field induced insulator to metal transition in amorphous-GdxSi1−x. Solid State Commun 114:81ADSCrossRefGoogle Scholar
  79. 79.
    Zeng L, Cao JX, Helgren E, Karel J, Arenholz E, Ouyang L, Smith DJ, Wu RQ, Hellman F (2010) Distinct local electronic structure and magnetism for Mn in amorphous Si and Ge. Phys Rev B 82:165202ADSCrossRefGoogle Scholar
  80. 80.
    Soo YL, Yao JH, Wang CS, Chang SL, Hsieh CA, Lee JF, Chin TS (2010) Local structures and concentration dependence of magnetic properties in Cr- and Mn-doped amorphous silicon ferromagnetic thin films. Phys Rev B 81:104104ADSCrossRefGoogle Scholar
  81. 81.
    Qin Y-F, Yan S-S, Kang S-S, Xiao S-Q, Zhang Q, Yao X-X, Xu T-S, Tian Y-F, Dai Y-Y, Liu G-L, Chen Y-X, Mei L-M, Ji G, Zhang Z (2011) Homogeneous amorphous FexGe1−x magnetic semiconductor films with high Curie temperature and high magnetization. Phys Rev B 83:235214ADSCrossRefGoogle Scholar
  82. 82.
    Ottaviano L, Continenza A, Profeta G, Impellizzeri G, Irrera A, Gunnella R, Kazakova O (2011) Room-temperature ferromagnetism in Mn-implanted amorphous Ge. Phys Rev B 83:134426ADSCrossRefGoogle Scholar
  83. 83.
    See Bibliography of Magnetic Materials and Tabulation of Magnetic Transition Temperatures Compiled by Connolly TF, Copenhaver ED (1970) Solid state literature guides. vol 5 Oak Ridge National Laboratories Literature Guides. Plenum, New YorkGoogle Scholar
  84. 84.
    Wurmehl S, Fecher GH, Kandpal HC, Ksenofonov V, Felser C, Lin HJ (2006) Investigation of Co2FeSi: the Heusler compound with highest Curie temperature and magnetic moment. Appl Phys Lett 88:032503ADSCrossRefGoogle Scholar
  85. 85.
    Cable JW, Wakabayashi N, Radhakrishna P (1993) Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge. Phys Rev B 48:6159–6166ADSCrossRefGoogle Scholar
  86. 86.
    Takizawa H, Yamashita T, Uheda K, Endo T (2002) High-pressure synthesis of ferromagnetic Mn3Ge with the Cu3Au-type structure. J Phys Condens Matter 14:11147–11150ADSCrossRefGoogle Scholar
  87. 87.
    Hamaya K, Ueda K, Kishi Y, Ando Y, Sadoh T, Miyao M (2008) Epitaxial ferromagnetic Fe3Si/Si(111) structures with high-quality heterointerfaces. Appl Phys Lett 93:132117ADSCrossRefGoogle Scholar
  88. 88.
    Ueda K, Hamaya K, Yamamoto K, Ando Y, Sadoh T, Maeda Y, Miyao M (2008) Low-temperature molecular beam epitaxy of a ferromagnetic full-Heusler alloy Fe2MnSi on Ge(111). Appl Phys Lett 93:112108ADSCrossRefGoogle Scholar
  89. 89.
    Hamaya K, Itoh H, Nakatsuka O, Ueda K, Yamamoto K, Itakura M, Taniyama T, Ono T, Miyao M (2009) Ferromagnetism and electronic structures of nonstoichiometric Heusler-Alloy Fe3−xMnxSi epilayers grown on Ge(111). Phys Rev Lett 102:137204ADSCrossRefGoogle Scholar
  90. 90.
    Yamada S, Hamaya K, Yamamoto K, Murakami T, Mibu K, Miyao M (2010) Significant growth-temperature dependence of ferromagnetic properties for Co2FeSi/Si(111) prepared by low-temperature molecular beam epitaxy. Appl Phys Lett 96:082511ADSCrossRefGoogle Scholar
  91. 91.
    Kasahara K, Yamamoto K, Yamada S, Murakami T, Hamaya K, Mibu K, Miyao M (2010) Highly ordered Co2FeSi Heusler alloys grown on Ge(111) by low-temperature molecular beam epitaxy. J Appl Phys 107:09B105CrossRefGoogle Scholar
  92. 92.
    Anumpam JPC, Rout PK, Hossain Z, Budhani RC (2010) Charge transport and magnetic ordering in laser ablated Co2FeSi thin films epitaxially grown on (100) SrTiO3. J Phys D Appl Phys 43:255002ADSCrossRefGoogle Scholar
  93. 93.
    Wang WH, Przybylski M, Kuch W, Chelaru LI, Wang J, Lu YF, Barthel J, Meyerheim HL, Kirschner J (2005) Magnetic properties and spin polarization of Co2MnSi Heusler alloy thin films epitaxially grown on GaAs(001). Phys Rev B 71:144416ADSCrossRefGoogle Scholar
  94. 94.
    Gercsi Z, Rajanikanth A, Takahashi YK, Hono K, Kikuchi M, Tezuka N, Inomata K (2006) Spin polarization of Co2FeSi full-Heusler alloy and tunneling magnetoresistance of its magnetic tunneling junctions. Appl Phys Lett 89:082512ADSCrossRefGoogle Scholar
  95. 95.
    Ando Y, Hamaya K, Kasahara K, Kishi Y, Ueda K, Sawano K, Sadoh T, Miyao M (2009) Electrical injection and detection of spin-polarized electrons in silicon through an Fe3Si/Si Schottky tunnel barrier. Appl Phys Lett 94:182105ADSCrossRefGoogle Scholar
  96. 96.
    Candini A, Moze O, Kockelmann W, Cadogan JM, Bruck E, Tegus O (2004) Revised magnetic phase diagram for FexMn5−xSi3 intermetallics. J Appl Phys 95:6819–6821ADSCrossRefGoogle Scholar
  97. 97.
    Zeng C, Erwin SC, Feldman LC, Li AP, Jin R, Song Y, Thompson JR, Weitering HH (2003) Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Appl Phys Lett 83:5002–5004ADSCrossRefGoogle Scholar
  98. 98.
    Austin AE (1969) Magnetic properties of Fe3Ge5-Mn5Ge3 solid solutions. J Appl Phys 40:1381–1382ADSCrossRefGoogle Scholar
  99. 99.
    Wernick JH, Wertheim GK, Sherwood SK (1972) Magnetic behavior of monosilicides of 3D-transition elements. Mater Res Bull 7:1431–1441CrossRefGoogle Scholar
  100. 100.
    Manyala N, Sidis Y, DiTusa JF, Aeppli G, Young DP, Fisk Z (2000) Magnetoresistance from quantum interference effects in ferromagnets. Nature 404:581–584ADSCrossRefGoogle Scholar
  101. 101.
    Manyala N, DiTusa JF, Aeppli G, Ramirez AP (2008) Doping a semiconductor to create an unconventional metal. Nature 454:976–980ADSCrossRefGoogle Scholar
  102. 102.
    DiTusa JF, Friemelt K, Bucher E, Aeppli G, Ramirez AP (1997) Metal-insulator transitions in the Kondo insulator FeSi and classic semiconductors are similar. Phys Rev Lett 78:2831–2834ADSCrossRefGoogle Scholar
  103. 103.
    DiTusa JF, Friemelt K, Bucher E, Aeppli G, Ramirez AP (1998) Heavy fermion metal Kondo insulator transition in FeSi1−xAlx. Phys Rev B 58:10288–10301ADSCrossRefGoogle Scholar
  104. 104.
    Ishikawa Y, Tajima K, Bloch D, Roth M (1976) Helical spin structure in manganese silicide MnSi. Solid State Commun 19:525ADSCrossRefGoogle Scholar
  105. 105.
    Ishikawa Y, Shirane G, Tarvin JA, Kohgi M (1977) Magnetic excitations in weak itinerant ferromagnet MnSi. Phys Rev B 16:4956–4970ADSCrossRefGoogle Scholar
  106. 106.
    Pecheur P, Toussaint G, Kenzari H, Malaman B, Welter R (1997) Ferromagnetism of the chimney-ladder compound Cr11Ge19. J Alloy Comp 262:363–365CrossRefGoogle Scholar
  107. 107.
    Lange H (1997) Electronic properties of semiconducting silicides. Phys Status Solidi (b) 201, 3–65 and references thereinGoogle Scholar
  108. 108.
    Hohl H, Ramirez AP, Goldmann C, Ernst G, Bucher E (1998) Transport properties of RuSi, RuGe, OsSi, and quasi-binary alloys of these compounds. J Alloy Comp 278:39–43CrossRefGoogle Scholar
  109. 109.
    See Madelung O (ed) (1996) Semiconductors-basic data, 2nd rev edn. Springer, BerlinGoogle Scholar
  110. 110.
    Lee M, Onose Y, Tokura Y, Ong NP (2007) Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys Rev B 75:172403ADSCrossRefGoogle Scholar
  111. 111.
    Lee M, Kang W, Onose Y, Tokura Y, Ong NP (2009) Unusual Hall effect anomaly in MnSi under pressure. Phys Rev Lett 102:186601ADSCrossRefGoogle Scholar
  112. 112.
    Neubauer A, Pfleiderer C, Ritz R, Niklowitz PG, Boni P (2009) Hall effect and magnetoresistance in MnSi. Phys B 404:3163–3166ADSCrossRefGoogle Scholar
  113. 113.
    Moriya T (1985) In: Fulde P (ed) Spin fluctuations in itinerant electron magnetism. Springer, BerlinGoogle Scholar
  114. 114.
    Pfleiderer C, Julian SR, Lonzarich GG (2001) Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414:427–430ADSCrossRefGoogle Scholar
  115. 115.
    Pfleiderer C, Reznik D, Pintschovius L, von Lohneysen H, Garst M, Rosch A (2004) Partial order in the non-Fermi-liquid phase of MnSi. Nature 427:227–231ADSCrossRefGoogle Scholar
  116. 116.
    Binz B, Vishwanath A, Aji V (2006) Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. Phys Rev Lett 96:207202ADSCrossRefGoogle Scholar
  117. 117.
    Roβler UK, Bogdanov AN, Pfleiderer C (2006) Spontaneous skyrmion ground states in magnetic metals. Nature 442:707Google Scholar
  118. 118.
    Tewari S, Belitz D, Kirkpatrick TR (2006) Blue quantum fog: chiral condensation in quantum helimagnets. Phys Rev Lett 96:047207ADSCrossRefGoogle Scholar
  119. 119.
    Fischer I, Shah N, Rosch A (2008) Crystalline phases in chiral ferromagnets: destabilization of helical order. Phys Rev B 77:024415ADSCrossRefGoogle Scholar
  120. 120.
    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georg R, Boni P (2009) Skyrmion lattice in a chiral magnet. Science 323:915–919ADSCrossRefGoogle Scholar
  121. 121.
    Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y (2010) Real-space observation of a two-dimensional skyrmion crystal. Nature 465:901–904ADSCrossRefGoogle Scholar
  122. 122.
    Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y (2011) Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater 10:106–109ADSCrossRefGoogle Scholar
  123. 123.
    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Muenzer W, Bauer A, Adams T, Georgii R, Boni P, Duine RA, Everschor K, Garst M, Rosch A (2010) Spin transfer torques in MnSi at ultralow current densities. Science 330:1648–1651ADSCrossRefGoogle Scholar
  124. 124.
    Sato T, Sakata M (1983) Magnetic and electrical-properties of CrGe and Cr11Ge8. J Phys Soc Jpn 52:1807–1813ADSCrossRefGoogle Scholar
  125. 125.
    Richardson M (1967) Partial equilibrium diagram of Fe-Ge system in range 40–72 at. percent Ge and crystallization of some iron germanides by chemical transport reactions. Acta Chem Scand 21:2305–2317CrossRefGoogle Scholar
  126. 126.
    Lebech B, Bernhard J, Freltoft T (1989) Magnetic-structures of cubic FeGe studied by small-angle neutron-scattering. J Phys Condens Matter 1:6105ADSCrossRefGoogle Scholar
  127. 127.
    Lundgren L, Beckman O, Attia V, Battacherjee SP, Richardson M (1970) Helical spin arrangement in cubic FeGe. Phys Scr 1:69–72ADSCrossRefGoogle Scholar
  128. 128.
    Yeo S, Nakatsuji S, Bianchi AD, Schlottmann P, Fisk Z, Balicas L, Stampe PA, Kennedy RJ (2003) First-order transition from a Kondo insulator to a ferromagnetic metal in single crystalline FeSi1−xGex. Phys Rev Lett 91:046401ADSCrossRefGoogle Scholar
  129. 129.
    Capan C et al To be publishedGoogle Scholar
  130. 130.
    Murarka SP (1980) Refractory silicides for integrated-circuits. J Vac Sci Technol 17:775–792ADSCrossRefGoogle Scholar
  131. 131.
    Murarka SP (1983) Transition-metal silicides. Annu Rev Mater Sci 13:117–137ADSCrossRefGoogle Scholar
  132. 132.
    Murarka SP (1995) Silicide thin-films and theor applications in microelectronics. Intermetallics 3:173–186CrossRefGoogle Scholar
  133. 133.
    Reader AH, van Ommen AH, Weijs PJW, Wolters RAM, Oostra DJ (1993) Transition-metal silicides in silicon technology. Rep Prog Phys 56:1397–1467ADSCrossRefGoogle Scholar
  134. 134.
    Derrien J, Chevrier J, Le Thanh V, Crumbaker TE, Natoli JY, Berbezier I (1993) Silicide epilayers – recent developments and prospects for a Si-compatible technology. Appl Surf Sci 70(71):546–558ADSCrossRefGoogle Scholar
  135. 135.
    Chevrier J, Vinh LT, Derrien J (1993) Strained and relaxed semiconducting silicide layers heteroepitaxially grown on silicon. Scanning Microsc 7:473–480Google Scholar
  136. 136.
    von Kanel H, Mader KA, Muller E, Onda N, Sirringhaus S (1992) Structural and electronic-properties of metastable epitaxial FeSi1+x films on Si(111). Phys Rev B 45:R13807–R13810ADSCrossRefGoogle Scholar
  137. 137.
    von Kanel H, Mendik M, Mader KA, Muller E, Onda N, Goncalves-Conto S, Schwartz C, Malegori G, Miglio L, Marabelli F (1994) Elastic and vibrational properties of pseudomorphic FeSi films. Phys Rev B 50:3570–3576ADSCrossRefGoogle Scholar
  138. 138.
    Kafader U, Wetzel P, Pirri C, Gewinner G (1993) X-ray photoemission characterization of thin epitaxial Fe silicide phases on Si(111). Appl Phys Lett 63:2360–2362ADSCrossRefGoogle Scholar
  139. 139.
    Koga T, Bright A, Suzuki T, Shimada K, Tatsuoka H, Kuwara H (2000) Growth of β-FeSi2 and FeSi layers by reactive deposition using Sb-related intermetallic compounds. Thin Solid Films 369:248–252ADSCrossRefGoogle Scholar
  140. 140.
    Matsuda K, Tatsuoka H, Matsunaga K, Isaji K, Kuwabara H, Brown PD, Xin Y, Dunn-Borkowski R, Humphreys CJ (1998) High-quality epitaxial MnSi(111) layers grown in the presence of an Sb flux. Jpn J Appl Phys 37:6556–6561ADSCrossRefGoogle Scholar
  141. 141.
    Matsuda K, Takano Y, Kuwabara K, Tatsuoka H, Kuwabara H, Suzuki Y, Fukuda Y, Hashimoto S, Yan Y, Pennycook SJ (2002) Formation of MnSb during the growth of MnSi layers in the presence of an Sb flux. J Appl Phys 91:4932–4935ADSCrossRefGoogle Scholar
  142. 142.
    Karhu E, Kahwaji S, Monchesky TL, Parsons C, Robertson MD, Maunders C (2010) Structure and magnetic properties of MnSi epitaxial thin films. Phys Rev B 82:184417ADSCrossRefGoogle Scholar
  143. 143.
    Karhu E, Kahwaji S, Robertson MD, Fritzche H, Kirby BJ, Majkrzak CF, Monchesky TL (2011) Helical magnetic order in MnSi thin films. Phys Rev B 84:060404(R)ADSCrossRefGoogle Scholar
  144. 144.
    Hortamani M, Sratskii L, Kratzer P, Mertig I (2009) Searching for Si-based spintronics by first principles calculations. New J Phys 11:125009CrossRefGoogle Scholar
  145. 145.
    Hortamani M, Kratzer P, Scheffler M (2007) Density-functional study of Mn monosilicide on the Si(111) surface: film formation versus island nucleation. Phys Rev B 76:235426ADSCrossRefGoogle Scholar
  146. 146.
    Higashi S, Kocan P, Tochihara H (2009) Reactive epitaxial growth of MnSi ultrathin films on Si(111) by Mn deposition. Phys Rev B 79:205312ADSCrossRefGoogle Scholar
  147. 147.
    Higashi S, Ikedo Y, Kocan P, Tochihara H (2008) Epitaxially grown flat MnSi ultrathin film on Si(111). Appl Phys Lett 93:013104ADSCrossRefGoogle Scholar
  148. 148.
    Magnano E, Bondino F, Cepek C, Parmigiani F, Mozzati MC (2010) Ferromagnetic and ordered MnSi(111) epitaxial layers. Appl Phys Lett 96:152502ADSCrossRefGoogle Scholar
  149. 149.
    Magnano E, Carleschi E, Nicolaou A, Pardini T, Zagrando M, Parmigiani F (2006) Growth of manganese silicide films by co-deposition of Mn and Si on Si(111): a spectroscopic and morphological investigation. Surf Sci 600:3932–3937ADSCrossRefGoogle Scholar
  150. 150.
    Suto H, Imai K, Fujii S, Honda S, Katayama M (2009) Growth process and surface structure of MnSi on Si(111). Surf Sci 603:226–231ADSCrossRefGoogle Scholar
  151. 151.
    Schwinge K, Paggel JJ, Fumagalli P (2007) Mosaic superstructure in manganese silicide films on Si(111)-(√3×√3): Bi-alpha. Surf Sci 601:810–813ADSCrossRefGoogle Scholar
  152. 152.
    Schwinge K, Muller C, Mogilatenko A, Paggel JJ, Fumagalli P (2005) Structure and magneto-optic Kerr measurements of epitaxial MnSi films on Si(111). J Appl Phys 97:103913ADSCrossRefGoogle Scholar
  153. 153.
    Manyala N, Ngom BD, Beye AC, Bucher R, Maaza M, Strydom A, Forbes A, Johnson ATC, DiTusa JF (2009) Structural and magnetic properties of ε-Fe1−xCoxSi thin films deposited via pulsed laser deposition. Appl Phys Lett 94:232503ADSCrossRefGoogle Scholar
  154. 154.
    Kulkarni JS, Kazakova O, Holmes JD (2006) Dilute magnetic semiconductor nanowires. Appl Phys A 85:277–286ADSCrossRefGoogle Scholar
  155. 155.
    Kazakova O, Kulkarni JS, Arnold DC, Holmes JD (2007) Engineering the magnetic properties of Ge1−xMnx nanowires. J Appl Phys 101:09H108CrossRefGoogle Scholar
  156. 156.
    Kazakova O, Kulkarni JS, Holmes JD, Demokritov SO (2005) Room-temperature ferromagnetism in Ge1−xMnx nanowires. Phys Rev B 72:094415ADSCrossRefGoogle Scholar
  157. 157.
    Kazakova O, van Meulen MI, Petkov N, Holmes JD (2009) Magnetic properties of single crystalline Ge1−xMnx nanowires. IEEE Trans Magn 45:4085–4088ADSCrossRefGoogle Scholar
  158. 158.
    Morgunov RB, Dmitriev AI, Tanimoto Y, Kazakova O (2009) Electron spin resonance of charge carriers and antiferromagnetic clusters in Ge0.99Cr0.01 nanowires. J Appl Phys 105:093922ADSCrossRefGoogle Scholar
  159. 159.
    Katkar AS, Chu Y-C, Chu L-W, Chen L-J (2011) Chromium-Doped Germanium Nanotowers: Growth Mechanism and Room Temperature Ferromagnetism. Cryst Growth Des 11:2957–2963CrossRefGoogle Scholar
  160. 160.
    Schmitt AL, Bierman MJ, Schmeisser D, Himpsel FJ, Jin S (2006) Synthesis and properties of single-crystal FeSi nanowires. Nano Lett 6:1617–1621ADSCrossRefGoogle Scholar
  161. 161.
    Liang S, Fang X, Xia TL, Qing YJ, Guo ZX (2010) Self-assembled magnetic nanohead-FeSi nanowire epitaxial heterojunctions by chemical vapor deposition. J Phys Chem C 114:16187–16190CrossRefGoogle Scholar
  162. 162.
    Schmitt AL, Zhu L, Schmeisser D, Hempsel FJ, Jin S (2006) Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. J Phys Chem B 110:18142–18146CrossRefGoogle Scholar
  163. 163.
    Seo K, Varadwaj KSK, Mohanty P, Lee S, Jo Y, Hung MH, Kim J, Kim B (2007) Magnetic properties of single-crystalline CoSi nanowires. Nano Lett 7:1240–1245ADSCrossRefGoogle Scholar
  164. 164.
    Schmitt AL, Higgins JM, Jin S (2008) Chemical synthesis and magnetotransport of magnetic semiconducting Fe1−xCoxSi alloy nanowires. Nano Lett 8:810–815ADSCrossRefGoogle Scholar
  165. 165.
    In J, Varadwaj KSK, Seo K, Lee S, Jo Y, Jung MH, Kim J, Kim B (2008) Single-crystalline ferromagnetic Fe1−xCoxSi nanowires. J Phys Chem C 112:4748–4752CrossRefGoogle Scholar
  166. 166.
    Higgins JM, Ding RH, DeGrave JP, Jin S (2010) Signature of helimagnetic ordering in single-crystal MnSi nanowires. Nano Lett 10:1605–1610ADSCrossRefGoogle Scholar
  167. 167.
    Seo K, Yoon H, Ryu S-W, Lee S, Jo Y, Jung M-H, Kim J, Choi Y-K, Kim B (2010) Itinerant helimagnetic single-crystalline MnSi nanowires. ACS Nano 4:2569–2576CrossRefGoogle Scholar
  168. 168.
    Schmitt AL, Higgins JM, Szczech JR, Jin S (2010) Synthesis and applications of metal silicide nanowires. J Mater Chem 20:223–235CrossRefGoogle Scholar
  169. 169.
    Song YP, Schmitt AL, Jin S (2007) Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett 7:965–969ADSCrossRefGoogle Scholar
  170. 170.
    Higgins JM, Carmichael P, Schmitt AL, Lee S, Degrave JP, Jin S (2011) Mechanistic investigation of the growth of Fe1−xCoxSi (0≤x≤1) and Fe5(Si1−yGey)3 (0≤y≤0.33) ternary alloy nanowires. ACS Nano 5:3268–3277CrossRefGoogle Scholar
  171. 171.
    Higgins JM, Ding RH, Jin S (2011) Synthesis and characterization of manganese-rich silicide α-Mn5Si3, β-Mn5Si3, and β -Mn3Si nanowires. Chem Mater 23:3848–3853CrossRefGoogle Scholar
  172. 172.
    Szczech JR, Schmitt AL, Bierman MJ, Jin S (2007) Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem Mater 19:3238–3243CrossRefGoogle Scholar
  173. 173.
    Seo K, Varadwaj KSK, Cha D, In J, Kim J, Park J, Kim B (2007) Synthesis and electrical properties of single crystalline CrSi2 nanowires. J Phys Chem C 111:9072–9076CrossRefGoogle Scholar
  174. 174.
    DeGrave JP, Schmitt AL, Selinsky RS, Higgins JM, Keavney DJ, Jin S (2011) Spin polarization measurement of homogeneously doped Fe1−xCoxSi nanowires by Andreev reflection spectroscopy. Nano Lett 11:4431–4437ADSCrossRefGoogle Scholar
  175. 175.
    Hung S-W, Wang TT-J, Chu L-W, Chen L-J (2011) Orientation-dependent room-temperature ferromagnetism of FeSi nanowires and applications in nonvolatile memory devices. J Phys Chem C 115:15592–15597CrossRefGoogle Scholar
  176. 176.
    Liu H, She GW, Ling ST, Mu LX, Shi WS (2011) Ferromagnetic Si/Mn27Si47 core/shell nanowire arrays. J Appl Phys 109:044305ADSCrossRefGoogle Scholar
  177. 177.
    Zeng CG, Kent PRC, Varela M, Eisenbach M, Stocks GM, Torija M, Shen J, Weitering HH (2006) Epitaxial stabilization of ferromagnetism in the nanophase of FeGe. Phys Rev Lett 96:127201ADSCrossRefGoogle Scholar
  178. 178.
    Yan CY, Higgins JM, Faber MS, Lee PS, Jin S (2011) Spontaneous growth and phase transformation of highly conductive nickel germanide nanowires. ACS Nano 5:5006–5014CrossRefGoogle Scholar
  179. 179.
    Theodoropoulou N, Hebard AF, Chu SNG, Overberg ME, Abernathy CR, Pearton SJ, Wilson RG, Zavada JM, Park YD (2002) Magnetic and structural properties of Fe, Ni, and Mn-implanted SiC. J Vac Sci Technol A 20:579–582ADSCrossRefGoogle Scholar
  180. 180.
    Stromberg F, Keune W, Chen X, Bedanta S, Reuther H, Muncklich A (2006) The origin of ferromagnetism in Fe-57 ion-implanted semiconducting 6H-polytype silicon carbide. J Phys Condens Mater 18:9881–9900ADSCrossRefGoogle Scholar
  181. 181.
    Song B, Bao HQ, Li H, Lei M, Peng TH, Jian JK, Liu J, Wang WY, Wang WJ, Chen XL (2009) Observation of glassy ferromagnetism in Al-doped 4H-SiC. J Am Chem Soc 131:1376–1377CrossRefGoogle Scholar
  182. 182.
    Ma SB, Sun YP, Zhao BC, Tong P, Zhu XB, Song WH (2007) Magnetic properties of Mn-doped cubic silicon carbide. Phys B 394:122–126ADSCrossRefGoogle Scholar
  183. 183.
    Song B, Bao HQ, Li H, Lei M, Jian JK, Han JC, Zhang XH, Meng SH, Wang WY, Chen XL (2009) Magnetic properties of Mn-doped 6H-SiC. Appl Phys Lett 94:102508ADSCrossRefGoogle Scholar
  184. 184.
    Song B, Chen XL, Han JC, Wang G, Bao HQ, Duan LB, Zhu KX, Li H, Zhang ZH, Wang WY, Zhang XH, Meng SH (2011) Raman scattering and magnetizations studies of (Al, Cr)-codoped 4H-SiC. J Magn Magn Matter 323:2876–2882ADSCrossRefGoogle Scholar
  185. 185.
    Seong HK, Park TE, Lee SC, Lee KR, Park JK, Choi HJ (2009) Magnetic properties of vanadium-doped silicon carbide nanowires. Met Mater Int 15:107–111CrossRefGoogle Scholar
  186. 186.
    Shaposhnikov VL, Sobolev NA (2004) The electronic structure and magnetic properties of transition metal-doped silicon carbide. J Phys Condens Matter 16:1761–1768ADSCrossRefGoogle Scholar
  187. 187.
    Los A, Los V (2010) Room temperature ferromagnetism in Mn-doped silicon carbide from first-principles calculations. J Phys Condens Matter 22:245801ADSCrossRefGoogle Scholar

Further Reading

  1. Bader SD (2006) Colloquium: opportunities in nanomagnetism. Rev Mod Phys 78:1–15ADSCrossRefGoogle Scholar
  2. Choi HJ, Seong HK, Kim U (2008) Diluted magnetic semiconductor nanowires. Nano 3:1–19CrossRefGoogle Scholar
  3. Dietl T, Ohno H (2006) Engineering magnetism in semiconductors. Matter Today 9:18–26CrossRefGoogle Scholar
  4. Fabian J, Matos-Abiague A, Ertler C, Stano P, Zutic I (2007) Semiconductor spintronics. Acta Phys Slov 57:565–907ADSGoogle Scholar
  5. Hanson R, Awschalom DD (2008) Coherent manipulation of single spins in semiconductors. Nature 453:7198CrossRefGoogle Scholar
  6. Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M, Griffin K, Ji X, Roberts BKN (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Matter Sci 41:793–815ADSCrossRefGoogle Scholar
  7. Maekawa S (ed) (2006) Concepts in spin electronics. Oxford University Press, OxfordzbMATHGoogle Scholar
  8. Macdonald AH, Schiffer P, Samarth N (2005) Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat Mater 4:195–202ADSCrossRefGoogle Scholar
  9. Schliemann J (2006) Spin hall effect. Int J Mod Phys B 20:1015–1036ADSCrossRefzbMATHGoogle Scholar
  10. Valenzuela SO (2009) Nonlocal electronic spin detection, spin accumulation and the spin hall effect. Int J Mod Phys 23:2413–2438ADSCrossRefGoogle Scholar
  11. Von Molnar S, Read D (2002) Magneto-transport in magnetic compound semiconductors and metals. J Magn Magn Mater 242:13–20ADSCrossRefGoogle Scholar
  12. Von Molnar S, Read D (2003) New materials for semiconductor spin-electronics. Proc IEEE 91:715–726CrossRefGoogle Scholar
  13. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495ADSCrossRefGoogle Scholar
  14. Wu H, Kratzer P, Scheffler M (2007) Density-functional theory study of half-metallic heterostructures: interstitial Mn in Si. Phys Rev Lett 98:117202Google Scholar
  15. Wu MW, Jiang JH, Weng MQ (2010) Spin dynamics in semiconductors. Phys Rep Rev Sec Phys Lett 493:61–236MathSciNetGoogle Scholar
  16. Zutic I, Dery H (2011) Spintronics: taming spin currents. Nat Mater 10:646–647ADSCrossRefGoogle Scholar
  17. Zutic I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Re Mod Phys 76:323–410ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA

Personalised recommendations