III–V Based Magnetic Semiconductors

  • T. JungwirthEmail author
Reference work entry


(Ga,Mn)As and related (III,Mn)V compounds are at the forefront of spintronics research exploring the synergy of ferromagnetism with the physics and the technology of semiconductors. Over the past 20 years, the research of (Ga,Mn)As has led to a deeper understanding of previously known spintronics phenomena, to discoveries of new effects, and to demonstrations of unprecedented functionalities of experimental spintronics devices with general applicability to a wide range of magnetic materials. In this chapter we review some of the basic structural, magnetic, electronic, and optical properties of the ferromagnetic (III,Mn)V semiconductors, as well as the devices fabricated from these model spintronics materials.


Tunnel Junction Orbit Coupling Magnetocrystalline Anisotropy Magnetic Tunnel Junction Ferromagnetic Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Acronyms


Anisotropic magnetoresistance


Coulomb blockade


Density of states


Domain wall


Ferromagnetic resonance


Generalized gradient approximations


Giant magnetoresistance


Linear spin-Hall magnetoresistance


Low-temperature molecular-beam epitaxy


Magnetic random access memory


Optical spin–orbit torque


Optical spin–transfer torque


Single-electron transistor


Spin-Hall effect


Spin–orbit torque


Superconducting quantum interference device


Scanning tunneling microscopy


Spin–transfer torque


Tunneling anisotropic magnetoresistance


Tight-binding approximation


Tunneling magnetoresistance


Walker breakdown



This review is based on numerous helpful discussions with our colleagues. In particular we acknowledge discussions with Richard Campion, Tomasz Dietl, Kevin Edmonds, Andrew Ferguson,Tom Foxon, Bryan Gallagher, Allan MacDonald, Jan Mašek, Petr Němec, Vít Novák, Hideo Ohno, Kamil Olejník, Andrev Rushforth, Jairo Sinova, Karel Výborný, Dieter Weiss, Jorg Wunderlich, and Jan Zemen. We also acknowledge support from the ERC Advanced Grant No. 268066, from the Ministry of Education of the Czech Republic Grant No. LM2011026, and from the Czech Science Foundation Grant No. 14-37427G


  1. 1.
    Ohno H, Munekata H, Penney T, von Molnár S, Chang LL (1992) Magnetotransport properties of p-type (In, Mn)As diluted magnetic III-V semiconductors. Phys Rev Lett 68:2664ADSCrossRefGoogle Scholar
  2. 2.
    Munekata H, Zaslavsky A, Fumagalli P, Gambino RJ (1993) Preparation of (In, Mn)As/(Ga, Al)Sb magnetic semiconductor heterostructures and their ferromagnetic characteristics. Appl Phys Lett 63:2929ADSCrossRefGoogle Scholar
  3. 3.
    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363ADSCrossRefGoogle Scholar
  4. 4.
    Hayashi T, Tanaka M, Seto K, Nishinaga T, Ando K (1997) III-V based magnetic(GaMnAs)/nonmagnetic(AlAs) semiconductor superlattices. Appl Phys Lett 71:1825ADSCrossRefGoogle Scholar
  5. 5.
    Van Esch A, Van Bockstal L, De Boeck J, Verbanck G, Van Steenbergen AS, Wellmann PJ, Grietens B, Herlach RBF, Borghs G (1997) Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor Ga1−xMnxAs. Phys Rev B 56:13103ADSCrossRefGoogle Scholar
  6. 6.
    Ohno H (1998) Making nonmagnetic semiconductors magnetic. Science 281:951ADSCrossRefGoogle Scholar
  7. 7.
    Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Electric-field control of ferromagnetism. Nature 408:944ADSCrossRefGoogle Scholar
  8. 8.
    Chiba D, Yamanouchi M, Matsukura F, Ohno H (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301:943ADSCrossRefGoogle Scholar
  9. 9.
    Chiba D, Matsukura F, Ohno H (2006) Electric-field control of ferromagnetism in (ga, mn)as. Appl Phys Lett 89:162505ADSCrossRefGoogle Scholar
  10. 10.
    Wunderlich J, Jungwirth T, Irvine AC, Kaestner B, Shick AB, Campion RP, Williams DA, Gallagher BL (2007) Coulomb blockade anisotropic magnetoresistance and voltage controlled magnetic switching in a ferromagnetic GaMnAs single electron transistor. J Magn Magn Mater 310:1883ADSCrossRefGoogle Scholar
  11. 11.
    Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F, Ohno H (2008) Magnetization vector manipulation by electric fields. Nature 455:515ADSCrossRefGoogle Scholar
  12. 12.
    Olejník K, Owen MHS, Novák V, Mašek J, Irvine AC, Wunderlich J, Jungwirth T (2008) Enhanced annealing, high Curie temperature and low-voltage gating in (Ga,Mn)As: a surface oxide control study. Phys Rev B 78:054403. arXiv:0802.2080ADSCrossRefGoogle Scholar
  13. 13.
    Owen MHS, Wunderlich J, Novák V, Olejník K, Zemen J, Výabornaý K, Ogawa S, Irvine AC, Ferguson AJ, Sirringhaus H, Jungwirth T (2009) Low voltage control of ferromagnetism in a semiconductor p-n junction. New J Phys 11:023008. arXiv:0807.0906CrossRefGoogle Scholar
  14. 14.
    Stolichnov I, Riester SWE, Trodahl HJ, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T (2008) Nonvolatile ferroelectric control of ferromagnetism in (Ga,Mn)As. Nat Mater 7:464. arXiv:0802.2074ADSCrossRefGoogle Scholar
  15. 15.
    Riester SWE, Stolichnov I, Trodahl HJ, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T (2009) Toward a low-voltage multiferroic transistor: magnetic (ga, mn)as under ferroelectric control. Appl Phys Lett 94:063504ADSCrossRefGoogle Scholar
  16. 16.
    Sawicki M, Chiba D, Korbecka A, Nishitani Y, Majewski JA, Matsukura F, Dietl T, Ohno H (2010) Experimental probing of the interplay between ferromagnetism and localisation in (ga,mn)as. Nat Phys 6:22. arXiv:0909.3694CrossRefGoogle Scholar
  17. 17.
    Munekata H, Abe T, Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H (1997) Light-induced ferromagnetism in III-V-based diluted magnetic semiconductor heterostructures. Appl Phys Lett 81:4862Google Scholar
  18. 18.
    Koshihara S, Oiwa A, Hirasawa M, Katsumoto S, Iye Y, Urano C, Takagi H, Munekata H (1997) Ferromagnetic order induced by photogenerated carriers in magnetic III-V semiconductor heterostructures of (In, Mn)As/GaSb. Phys Rev Lett 78:4617ADSCrossRefGoogle Scholar
  19. 19.
    Ohno Y, Young DK, Beschoten B, Matsukura F, Ohno H, Awschalom DD (1999) Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402:790ADSCrossRefGoogle Scholar
  20. 20.
    Tanaka M, Higo Y (2001) Large tunneling magnetoresistance in GaMnAs/AlAs/GaMnAs ferromagnetic semiconductor tunnel junctions. Phys Rev Lett 87:026602ADSCrossRefGoogle Scholar
  21. 21.
    Chiba D, Matsukura F, Ohno H (2004) Tunneling magnetoresistance in (Ga, Mn)As-based heterostructures with a GaAs barrier. Physica E 21:966ADSCrossRefGoogle Scholar
  22. 22.
    Saito H, Yuasa S, Ando K (2005) Origin of the tunnel anisotropic magnetoresistance in Ga1−x Mnx As/ZnSe/Ga1−xMnxAs magnetic tunnel junctions of II-VI/III-V heterostructures. Phys Rev Lett 95:086604ADSCrossRefGoogle Scholar
  23. 23.
    Mattana R, Elsen M, George JM, Jaffrès H, Dau FNV, Fert A, Wyczisk MF, Olivier J, Galtier P, Lépine B, Guivarc’h A, Jézéquel G (2005) Chemical profile and magnetoresistance of Ga1−x Mnx As/GaAs/AlAs/GaAs/Ga1−xMnxAs tunnel junctions. Phys Rev B 71:075206ADSCrossRefGoogle Scholar
  24. 24.
    Chiba D, Sato Y, Kita T, Matsukura F, Ohno H (2004) Current-driven magnetization reversal in a ferromagnetic semiconductor (ga,mn)as/gaas/(ga,mn)as tunnel junction. Phys Rev Lett 93:216602. arXiv:cond-mat/0403500ADSCrossRefGoogle Scholar
  25. 25.
    Yamanouchi M, Chiba D, Matsukura F, Ohno H (2004) Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428:539ADSCrossRefGoogle Scholar
  26. 26.
    Yamanouchi M, Chiba D, Matsukura F, Dietl T, Ohno H (2006) Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As. Phys Rev Lett 96:096601. arXiv:cond-mat/0601515ADSCrossRefGoogle Scholar
  27. 27.
    Wunderlich J, Irvine AC, Zemen J, Holý V, Rushforth AW, Ranieri ED, Rana U, Výborný K, Sinova J, Foxon CT, Campion RP, Williams DA, Gallagher BL, Jungwirth T (2007) Local control of magnetocrystalline anisotropy in (Ga,Mn)As microdevices: demonstration in current-induced switching. Phys Rev B 76:054424. arXiv:0707.3329ADSCrossRefGoogle Scholar
  28. 28.
    Adam J, Vernier N, Ferre J, Thiaville A, Jeudy V, Lemaitre A, Thevenard L, Faini G (2009) Nonadiabatic spin-transfer torque in (Ga, Mn)As with perpendicular anisotropy. Phys Rev B 80:193204ADSCrossRefGoogle Scholar
  29. 29.
    Wang KY, Edmonds KW, Irvine AC, Tatara G, Ranieri ED, Wunderlich J, Olejnik K, Rushforth AW, Campion RP, Williams DA, Foxon CT, Gallagher BL (2010) Current-driven domain wall motion across a wide temperature range in a (Ga, Mn)(As, P) device. Appl Phys Lett 97:262102ADSCrossRefGoogle Scholar
  30. 30.
    Curiale J, Lemaitre A, Ulysse C, Faini G, Jeudy V (2012) Spin drift velocity, polarization, and current-driven domain-wall motion in (Ga, Mn)(As, P). Phys Rev Lett 108:076604ADSCrossRefGoogle Scholar
  31. 31.
    De Ranieri E, Roy PE, Fang D, Vehsthedt EK, Irvine AC, Heiss D, Casiraghi A, Campion RP, Gallagher BL, Jungwirth T, Wunderlich J (2013) Piezo-electric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nat Mater 12:808ADSCrossRefGoogle Scholar
  32. 32.
    Sinova J, Jungwirth T, Liu X, Sasaki Y, Furdyna JK, Atkinson WA, MacDonald AH (2004) Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors. Phys Rev B 69:085209. arXiv:cond-mat/0308386ADSCrossRefGoogle Scholar
  33. 33.
    Garate I, Gilmore K, Stiles MD, MacDonald AH (2009) Non-adiabatic spin transfer torque in real materials. Phys Rev B 79:104416. arXiv:0812.2570ADSCrossRefGoogle Scholar
  34. 34.
    Hals KMD, Nguyen AK, Brataas A (2009) Intrinsic coupling between current and domain wall motion in (ga,mn)as. Phys Rev Lett 102:256601. arXiv:0811.2235ADSCrossRefGoogle Scholar
  35. 35.
    Wenisch J, Gould C, Ebel L, Storz J, Pappert K, Schmidt MJ, Kumpf C, Schmidt G, Brunner K, Molenkamp LW (2007) Control of magnetic anisotropy in (Ga,Mn)As by lithography-induced strain relaxation. Phys Rev Lett 99:077201. arXiv:cond-mat/0701479ADSCrossRefGoogle Scholar
  36. 36.
    Rushforth AW, Ranieri ED, Zemen J, Wunderlich J, Edmonds KW, King CS, Ahmad E, Campion RP, Foxon CT, Gallagher BL, Výborný K, Kučera J, Jungwirth T (2008) Voltage control of magnetocrystalline anisotropy in ferromagnetic - semiconductor/piezoelectric hybrid structures. Phys Rev B 78:085314. arXiv:0801.0886ADSCrossRefGoogle Scholar
  37. 37.
    Overby M, Chernyshov A, Rokhinson LP, Liu X, Furdyna JK (2008) GaMnAs-based hybrid multiferroic memory device. Appl Phys Lett 92:192501. arXiv:0801.4191ADSCrossRefGoogle Scholar
  38. 38.
    Goennenwein STB, Althammer M, Bihler C, Brandlmaier A, Geprägs S, Opel M, Schoch W, Limmer W, Gross R, Brandt MS (2008) Piezo-voltage control of magnetization orientation in a ferromagnetic semiconductor. Phys Status Solidi (RRL) 2:96ADSCrossRefGoogle Scholar
  39. 39.
    Gould C, Rüster C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW (2004) Tunneling anisotropic magnetoresistance: a spin-valve like tunnel magnetoresistance using a single magnetic layer. Phys Rev Lett 93:117203. arXiv:cond-mat/0407735ADSCrossRefGoogle Scholar
  40. 40.
    Moser J, Matos-Abiague A, Schuh D, Wegscheider W, Fabian J, Weiss D (2007) Tunneling anisotropic magnetoresistance and spin-orbit coupling in fe/gaas/au tunnel junctions. Phys Rev Lett 99:056601. arXiv:cond-mat/0611406ADSCrossRefGoogle Scholar
  41. 41.
    Park BG, Wunderlich J, Marti X, Holy V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick AB, Jung-wirth T (2011) A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat Mater 10:347. arXiv:1011.3188ADSCrossRefGoogle Scholar
  42. 42.
    Wunderlich J, Jungwirth T, Kaestner B, Irvine AC, Wang KY, Stone N, Rana U, Giddings AD, Shick AB, Foxon CT, Campion RP, Williams DA, Gallagher BL (2006) Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys Rev Lett 97:077201. arXiv:cond-mat/0602608ADSCrossRefGoogle Scholar
  43. 43.
    Bernand-Mantel A, Seneor P, Bouzehouane K, Fusil S, Deranlot C, Petroff F, Fert A (2009) Anisotropic magneto-coulomb effects and magnetic single-electron-transistor action in a single nanoparticle. Nat Phys 5:920CrossRefGoogle Scholar
  44. 44.
    Ciccarelli C, Zarbo LP, Irvine AC, Campion RP, Gallagher BL, Wunderlich J, Jungwirth T, Ferguson AJ (2012) Spin gating electrical current. Appl Phys Lett 101:122411. arXiv:1203.2439ADSCrossRefGoogle Scholar
  45. 45.
    Chernyshov A, Overby M, Liu X, Furdyna JK, Lyanda-Geller Y, Rokhinson LP (2009) Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat Phys 5:656. arXiv:0812.3160CrossRefGoogle Scholar
  46. 46.
    Fang D, Kurebayashi H, Wunderlich J, Vyborny K, Zarbo LP, Campion RP, Casiraghi A, Gallagher BL, Jungwirth T, Ferguson AJ (2011) Spin-orbit driven ferromagnetic resonance: a nanoscale magnetic characterisation technique. Nat Nanotechnol 6:413. arXiv:1012.2397ADSCrossRefGoogle Scholar
  47. 47.
    Nemec P, Rozkotova E, Tesarova N, Trojanek F, Ranieri ED, Olejnik K, Zemen J, Novak V, Cukr M, Maly P, Jungwirth T (2012) Experimental observation of the optical spin transfer torque. Nat Phys 8:411. arXiv:1201.1436CrossRefGoogle Scholar
  48. 48.
    Tesarova N, Nemec P, Rozkotova E, Zemen J, Trojanek F, Olejnik K, Novak V, Maly P, Jungwirth T (2013) Experimental observation of the optical spin-orbit torque. Nat Photonics 7:492. arXiv:1207.0307ADSCrossRefGoogle Scholar
  49. 49.
    Matsukura F, Ohno H, Dietl T (2002) In: Buschow KHJ (ed) Handbook of magnetic materials, vol 14. Elsevier, Amsterdam, p 1. From Ohno Lab HomepageGoogle Scholar
  50. 50.
    Dietl T (2003) In: Kramer B (ed) Advances in solid state physics. Springer, Berlin, p 413. arXiv:cond-mat/0306479CrossRefGoogle Scholar
  51. 51.
    Jungwirth T, Sinova J, Mašek J, Kučera J, MacDonald AH (2006) Theory of ferromagnetic (III,Mn)V semiconductors. Rev Mod Phys 78:809. arXiv:cond-mat/0603380ADSCrossRefGoogle Scholar
  52. 52.
    Sato K, Bergqvist L, Kudrnovský J, Dederichs PH, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh VA, Fukushima T, Kizaki H, Zeller R (2010) First-principles theory of dilute magnetic semiconductors. Rev Mod Phys 82:1633ADSCrossRefGoogle Scholar
  53. 53.
    Dietl T, Ohno H (2014) Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev Mod Phys 86:187. arXiv:1307.3429ADSCrossRefGoogle Scholar
  54. 54.
    Jungwirth T, Wunderlich J, Novak V, Olejnik K, Gallagher BL, Campion RP, Edmonds KW, Rushforth AW, Ferguson AJ, Nemec P (2014) Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev Mod Phys 86:855. arXiv:1310.1944ADSCrossRefGoogle Scholar
  55. 55.
    Chapman RA, Hutchinson WG (1967) Photoexcitation and photoionization of neutral manganese acceptors in gallium arsenide. Phys Rev Lett 18:443ADSCrossRefGoogle Scholar
  56. 56.
    Blakemore JS, Brown WJ, Stass ML, Woodbury DA (1973) Thermal activation energy of manganese acceptors in gallium arsenide as a function of impurity spacing. J Appl Phys 44:3352ADSCrossRefGoogle Scholar
  57. 57.
    Bhattacharjee AK, à la Guillaume CB (2000) Model for the mn acceptor in gaas. Solid State Commun 113:17ADSCrossRefGoogle Scholar
  58. 58.
    Yakunin AM, Silov AY, Koenraad PM, Wolter JH, Van Roy W, De Boeck J, Tang JM, Flatté ME (2004) Spatial structure of an individual mn acceptor in gaas. Phys Rev Lett 92:216806. arXiv:cond-mat/0402019ADSCrossRefGoogle Scholar
  59. 59.
    Madelung O, Rössler U, Schulz M (2003) Impurities and, defects in group IV elements, IV-IV and III-V compounds. Part b: group IV-IV and III-V compounds. Landolt-Börnstein – group III condensed matter, vol 41A2b. Springer, Berlin/HeidelbergGoogle Scholar
  60. 60.
    Ohno H (1999) Properties of ferromagnetic iii-v semiconductors. J Magn Magn Mater 200:110ADSCrossRefGoogle Scholar
  61. 61.
    Campion RP, Edmonds KW, Zhao LX, Wang KY, Foxon CT, Gallagher BL, Staddon CR (2003) The growth of gamnas films by molecular beam epitaxy using arsenic dimers. J Cryst Growth 251:311ADSCrossRefGoogle Scholar
  62. 62.
    Potashnik SJ, Ku KC, Mahendiran R, Chun SH, Wang RF, Samarth N, Schiffer P (2002) Saturated ferromagnetism and magnetization deficit in optimally annealed (Ga,Mn)As epilayers. Phys Rev B 66:012408. arXiv:cond-mat/0204250ADSCrossRefGoogle Scholar
  63. 63.
    Jungwirth T, Sinova J, MacDonald AH, Gallagher BL, Novák V, Edmonds KW, Rushforth AW, Campion RP, Foxon CT, Eaves L, Olejník K, Mašek J, Yang SRE, Wunderlich J, Gould C, Molenkamp LW, Dietl T, Ohno H (2007) Character of states near the fermi level in (Ga,Mn)As: impurity to valence band crossover. Phys Rev B 76:125206. arXiv:0707.0665ADSCrossRefGoogle Scholar
  64. 64.
    Ruzmetov D, Scherschligt J, Baxter DV, Wojtowicz T, Liu X, Sasaki Y, Furdyna JK, Yu KM, Walukiewicz W (2004) High-temperature hall effect in Ga1−xMnxAs. Phys Rev B 69:155207ADSCrossRefGoogle Scholar
  65. 65.
    MacDonald AH, Schiffer P, Samarth N (2005) Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat Mater 4:195. arXiv:cond-mat/0503185ADSCrossRefGoogle Scholar
  66. 66.
    Jungwirth T, Wang KY, Mašek J, Edmonds KW, König J, Sinova J, Polini M, Goncharuk NA, MacDonald AH, Sawicki M, Campion RP, Zhao LX, Foxon CT, Gallagher BL (2005) Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys Rev B 72:165204. arXiv:cond-mat/0505215ADSCrossRefGoogle Scholar
  67. 67.
    Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, New YorkCrossRefGoogle Scholar
  68. 68.
    Lee PA, Ramakrishnan TV (1985) Disordered electronic systems. Rev Mod Phys 57:287ADSCrossRefGoogle Scholar
  69. 69.
    Paalanen MA, Bhatt RN (1991) Transport and thermodynamic properties across the metal-insulator transition. Physica B 169:223ADSCrossRefGoogle Scholar
  70. 70.
    Dietl T (2007) Origin of ferromagnetic response in diluted magnetic semiconductors and oxides. J Phys Condens Matter 19:165204. arXiv:0711.0340ADSCrossRefGoogle Scholar
  71. 71.
    Dietl T (2008) Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors. J Phys Soc Jpn 77:031005. arXiv:0712.1293ADSCrossRefGoogle Scholar
  72. 72.
    Ohya S, Takata K, Tanaka M (2011) Nearly nonmagnetic valence band of the ferromagnetic semiconductor GaMnAs. Nat Phys 7:342CrossRefGoogle Scholar
  73. 73.
    Gray AX, Minár J, Ueda S, Stone PR, Yamashita Y, Fujii J, Braun J, Plucinski L, Schneider CM, Panaccione G, Ebert H, Dubon OD, Kobayashi K, Fadley CS (2012) Bulk electronic structure of the dilute magnetic semiconductor GaMnAs through hard x-ray angle-resolved photoemission. Nat Mater 11:957ADSCrossRefGoogle Scholar
  74. 74.
    Di Marco I, Thunstrom P, Katsnelson MI, Sadowski J, Karlsson K, Lebegue S, Kanski J, Eriksson O (2013) Electron correlations in MnxGa1xAs as seen by resonant electron spectroscopy and dynamical mean field theory. Nat Commun 4:2645CrossRefGoogle Scholar
  75. 75.
    Mašek J, Máca F, Kudrnovský J, Makarovsky O, Eaves L, Campion RP, Edmonds KW, Rushforth AW, Foxon CT, Gallagher BL, Novak V, Sinova J, Jungwirth T (2010) Microscopic analysis of the valence band and impurity band theories of (Ga,Mn)As. Phys Rev Lett 105:227202. arXiv:1007.4704ADSCrossRefGoogle Scholar
  76. 76.
    Wang M, Edmonds KW, Gallagher BL, Rushforth AW, Makarovsky O, Patane A, Campion RP, Foxon CT, Novak V, Jungwirth T (2013) High curie temperatures at low compensation in the ferromagnetic semiconductor (ga,mn)as. Phys Rev B 87, 121301(R). arXiv:1211.3860ADSCrossRefGoogle Scholar
  77. 77.
    Dobrowolska M, Tivakornsasithorn K, Liu X, Furdyna JK, Berciu M, Yu KM, Walukiewicz W (2012) Controlling the Curie temperature in (Ga, Mn)As through location of the fermi level within the impurity band. Nat Mater 11:444ADSCrossRefGoogle Scholar
  78. 78.
    Dobrowolska M, Liu X, Furdyna JK, Berciu M, Yu KM, Walukiewicz W (2012) Response to the comment of K. W. Edmonds et al.
  79. 79.
    Nemec P, Novak V, Tesarova N, Rozkotova E, Reichlova H, Butkovicova D, Trojanek F, Olejnik K, Maly P, Campion RP, Gallagher BL, Sinova J, Jungwirth T (2013) The essential role of carefully optimized synthesis for elucidating intrinsic material properties of (Ga,Mn)As. Nat Commun 4:1422. arXiv:1207.0310ADSCrossRefGoogle Scholar
  80. 80.
    Gao H, Cernov C, Jungwirth T, Sinova J (2015) Disorder and localization effects on the local spectroscopic and infrared-optical properties of GaMnAs. Phys Rev B 91:245201. arXiv:1502.05705v1Google Scholar
  81. 81.
    Richardella A, Roushan P, Mack S, Zhou B, Huse DA, Awschalom DD, Yazdani A (2010) Visualizing critical correlations near the metal-insulator transition in Ga1−xMnxAs. Science 327:665Google Scholar
  82. 82.
    Yokoyama M, Yamaguchi H, Ogawa T, Tanaka M (2005) Zinc-blende-type mnas nanoclusters embedded in gaas. J Appl Phys 97, 10D317CrossRefGoogle Scholar
  83. 83.
    Kovacs A, Sadowski J, Kasama T, Domagala J, Mathieu R, Dietl T, Dunin-Borkowski RE (2011) Voids and mn-rich inclusions in a (ga, mn)as ferromagnetic semiconductor investigated by transmission electron microscopy. J Appl Phys 109:083546ADSCrossRefGoogle Scholar
  84. 84.
    Novák V, Olejník K, Wunderlich J, Cukr M, Výborný K, Rushforth AW, Edmonds KW, Campion RP, Gallagher BL, Sinova J, Jungwirth T (2008) Curie point singularity in the temperature derivative of resistivity in (Ga,Mn)As. Phys Rev Lett 101:077201. arXiv:0804.1578ADSCrossRefGoogle Scholar
  85. 85.
    Fisher ME, Langer JS (1968) Resistive anomalies at magnetic critical points. Phys Rev Lett 20:665ADSCrossRefGoogle Scholar
  86. 86.
    López-Sancho MP, Brey L (2003) Temperature dependence of the dielectric constant and resistivity of diluted magnetic semiconductors. Phys Rev B 68:113201. arXiv:cond-mat/0302237ADSCrossRefGoogle Scholar
  87. 87.
    Moca CP, Sheu BL, Samarth N, Schiffer P, Janko B, Zarand G (2009) Scaling theory of magnetoresistance and carrier localization in GaMnAs. Phys Rev Lett 102:137203ADSCrossRefGoogle Scholar
  88. 88.
    Jungwirth T, Mašek J, Wang KY, Edmonds KW, Sawicki M, Polini M, Sinova J, MacDonald AH, Campion RP, Zhao LX, Farley NRS, Johal TK, van der Laan G, Foxon CT, Gallagher BL (2006) Low-temperature magnetization of (Ga,Mn)As semiconductors. Phys Rev B 73:165205. arXiv:cond-mat/0508255ADSCrossRefGoogle Scholar
  89. 89.
    Máca F, Mašek J (2002) Electronic states in Ga1−xMnxAs: substitutional versus interstitial position of mn. Phys Rev B 65:235209ADSCrossRefGoogle Scholar
  90. 90.
    Yu KM, Walukiewicz W, Wojtowicz T, Kuryliszyn I, Liu X, Sasaki Y, Furdyna JK (2002) Effect of the location of Mn sites in ferromagnetic Ga1−xMnxAs on its curie temperature. Phys Rev B 65:201303ADSCrossRefGoogle Scholar
  91. 91.
    Edmonds KW, Wang KY, Campion RP, Neumann AC, Farley NRS, Gallagher BL, Foxon CT (2002) High Curie temperature GaM-nAs obtained by resistance-monitored annealing. Appl Phys Lett 81:4991. arXiv:cond-mat/0209554ADSCrossRefGoogle Scholar
  92. 92.
    Dietl T, Ohno H, Matsukura F (2001) Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B 63:195205. arXiv:cond-mat/0007190ADSCrossRefGoogle Scholar
  93. 93.
    Abolfath M, Jungwirth T, Brum J, MacDonald AH (2001) Theory of magnetic anisotropy in III1−xMnxV ferromagnets. Phys Rev B 63:054418. arXiv:cond-mat/0006093ADSCrossRefGoogle Scholar
  94. 94.
    Zemen J, Kucera J, Olejnik K, Jungwirth T (2009) Magneto crystalline anisotropies in (Ga,Mn)As: a systematic theoretical study and comparison with experiment. Phys Rev B 80:155203. arXiv:0904.0993ADSCrossRefGoogle Scholar
  95. 95.
    König J, Jungwirth T, MacDonald AH (2001) Theory of magnetic properties and spin-wave dispersion for ferromagnetic (Ga,Mn)As. Phys Rev B 64:184423. arXiv:cond-mat/0103116ADSCrossRefGoogle Scholar
  96. 96.
    Brey L, Gómez-Santos G (2003) Magnetic properties of GaMnAs from an effective Heisenberg Hamiltonian. Phys Rev B 68:115206. arXiv:cond-mat/0306125ADSCrossRefGoogle Scholar
  97. 97.
    Bouzerar G (2007) Magnetic spin excitations in diluted ferromagnetic systems: the case of Ga1−xMnxAs. Europhys Lett 79:57007. arXiv:cond-mat/0610465ADSCrossRefGoogle Scholar
  98. 98.
    Werpachowska A, Dietl T (2010) Theory of spin waves in ferromagnetic (Ga, Mn)As. Phys Rev B 82:085204ADSCrossRefGoogle Scholar
  99. 99.
    Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys Rev Lett 61:2472–2475ADSCrossRefGoogle Scholar
  100. 100.
    McGuire T, Potter R (1975) Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans Magn 11:1018–1038ADSCrossRefGoogle Scholar
  101. 101.
    Baxter DV, Ruzmetov D, Scherschligt J, Sasaki Y, Liu X, Furdyna JK, Mielke CH (2002) Anisotropic magnetoresistance in Ga1−xMnxAs. Phys Rev B 65:212407ADSCrossRefGoogle Scholar
  102. 102.
    Jungwirth T, Sinova J, Wang KY, Edmonds KW, Campion RP, Gallagher BL, Foxon CT, Niu Q, MacDonald AH (2003) Dc-transport properties of ferromagnetic (ga,mn)as semiconductors. Appl Phys Lett 83:320. arXiv:cond-mat/0302060ADSCrossRefGoogle Scholar
  103. 103.
    Tang HX, Kawakami RK, Awschalom DD, Roukes ML (2003) Giant planar hall effect in epitaxial (ga,mn)as devices. Phys Rev Lett 90:107201. arXiv:cond-mat/0210118ADSCrossRefGoogle Scholar
  104. 104.
    Matsukura F, Sawicki M, Dietl T, Chiba D, Ohno H (2004) Magnetotransport properties of metallic (ga, mn)as films with compressive and tensile strain. Physica E 21:1032ADSCrossRefGoogle Scholar
  105. 105.
    Goennenwein STB, Russo S, Morpurgo AF, Klapwijk TM, Van Roy W, De Boeck J (2005) Quantitative study of magnetotransport through a (ga,mn)as single ferromagnetic domain. Phys Rev B 71:193306. arXiv:cond-mat/0412290ADSCrossRefGoogle Scholar
  106. 106.
    Wang KY, Edmonds KW, Campion RP, Zhao LX, Foxon CT, Gallagher BL (2005) Anisotropic magnetoresistance and magnetic anisotropy in high-quality(ga,mn)as films. Phys Rev B 72:085201. arXiv:cond-mat/0506250ADSCrossRefGoogle Scholar
  107. 107.
    Limmer W, Glunk M, Daeubler J, Hummel T, Schoch W, Sauer R, Bihler C, Huebl H, Brandt MS, Goennenwein STB (2006) Angle-dependent magnetotransport in cubic and tetragonal ferromagnets: application to (001)-and (113)a-oriented (ga,mn)as. Phys Rev B 74:205205. arXiv:cond-mat/0607679ADSCrossRefGoogle Scholar
  108. 108.
    Rushforth AW, Výborný K, King CS, Edmonds KW, Campion RP, Foxon CT, Wunderlich J, Irvine AC, Vašek P, Novák V, Olejník K, Sinova J, Jungwirth T, Gallagher BL (2007) Anisotropic magnetoresistance components in (ga,mn)as. Phys Rev Lett 99:147207. arXiv:cond-mat/0702357ADSCrossRefGoogle Scholar
  109. 109.
    Thomson W (1856) On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron. Proc R Soc Lond 8:546ADSCrossRefGoogle Scholar
  110. 110.
    Daughton J (1992) Magnetoresistive memory technology. Thin Solid Films 216:162ADSCrossRefGoogle Scholar
  111. 111.
    Jungwirth T, Abolfath M, Sinova J, Kučera J, MacDonald AH (2002) Boltzmann theory of engineered anisotropic magnetoresistance in (ga,mn)as. Appl Phys Lett 81:4029. arXiv:cond-mat/0206416ADSCrossRefGoogle Scholar
  112. 112.
    Döring W (1938) Die Abhängigkeit des widerstandes von nickelkristallen von der richtung der spontanen magnetisierung. Ann Phys (Leipzig) 424:259ADSCrossRefGoogle Scholar
  113. 113.
    Jungwirth T, Niu Q, MacDonald AH (2002) Anomalous Hall effect in ferromagnetic semiconductors. Phys Rev Lett 88:207208. arXiv:cond-mat/0110484ADSCrossRefGoogle Scholar
  114. 114.
    Sawicki M, Wang K-Y, Edmonds KW, Campion RP, Staddon CR, Farley NRS, Foxon CT, Papis E, Kaminska E, Piotrowska A, Dietl T, Gallagher BL (2005) In-plane uniaxial anisotropy rotations in (ga,mn)as thin films. Phys Rev B 71:121302. arXiv:cond-mat/0410544ADSCrossRefGoogle Scholar
  115. 115.
    Rushforth AW, Giddings AD, Edmonds KW, Campion RP, Foxon CT, Gallagher BL (2006) Amr and magnetometry studies of ultra thin gamnas films. Phys Status Solidi C 3:4078. arXiv:cond-mat/0610692ADSCrossRefGoogle Scholar
  116. 116.
    Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39:4828ADSCrossRefGoogle Scholar
  117. 117.
    Julliere M (1975) Tunneling between ferromagnetic films. Phys Lett A 54:225ADSCrossRefGoogle Scholar
  118. 118.
    Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 74:3273ADSCrossRefGoogle Scholar
  119. 119.
    Miyazaki T, Tezuka N (1995) Giant magnetic tunneling effect in fe/al2o3/fe junction. J Magn Magn Mater 139:L231ADSCrossRefGoogle Scholar
  120. 120.
    Chappert C, Fert A, Dau FNV (2007) The emergence of spin electronics in data storage. Nat Mater 6:813ADSCrossRefGoogle Scholar
  121. 121.
    Brey L, Tejedor C, Fernández-Rossier J (2004) Tunnel magneto-resistance in gamnas: going beyond Jullière formula. Appl Phys Lett 85:1996. arXiv:cond-mat/0405473ADSCrossRefGoogle Scholar
  122. 122.
    Sankowski P, Kacman P, Majewski JA, Dietl T (2007) Spin-dependent tunneling in modulated structures of (ga,mn)as. Phys Rev B 75:045306. arXiv:cond-mat/0607206ADSCrossRefGoogle Scholar
  123. 123.
    Saffarzadeh A, Shokri AA (2006) Quantum theory of tunneling magnetoresistance in gamnas/gaas/gamnas heterostructures. J Magn Magn Mater 305:141. arXiv:cond-mat/0608006ADSCrossRefGoogle Scholar
  124. 124.
    Ohya S, Hai PN, Mizuno Y, Tanaka M (2007) Quantum-size effect and tunneling magnetoresistance in ferromagnetic-semiconductor quantum heterostructures. Phys Rev B 75:155328. arXiv:cond-mat/0608357ADSCrossRefGoogle Scholar
  125. 125.
    Elsen M, Jaffrès H, Mattana R, Thevenard L, Lemaître A, George JM (2007) Spin-polarized tunneling as a probe of the electronic properties of Ga1−xMnxAs heterostructures. Phys Rev B 76:144415. arXiv:0706.0109ADSCrossRefGoogle Scholar
  126. 126.
    Rüster C, Gould C, Jungwirth T, Sinova J, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW (2005) Very large tunneling anisotropic magnetoresistance of a (ga,mn)as/gaas/(ga,mn)as stack. Phys Rev Lett 94:027203. arXiv:cond-mat/0408532ADSCrossRefGoogle Scholar
  127. 127.
    Giraud R, Gryglas M, Thevenard L, Lemaître A, Faini G (2005) Voltage-controlled tunneling anisotropic magneto-resistance of a ferromagnetic p++ (ga,mn)as/n+ gaas zener-esaki diode. Appl Phys Lett 87:242505. arXiv:cond-mat/0509065ADSCrossRefGoogle Scholar
  128. 128.
    Ciorga M, Einwanger A, Sadowski J, Wegscheider W, Weiss D (2007) Tunneling anisotropic magnetoresistance effect in a p+−(ga, mn)as/n+−gaas esaki diode. Phys Status Solidi A 204:186ADSCrossRefGoogle Scholar
  129. 129.
    Rüster C, Gould C, Jungwirth T, Girgis E, Schott GM, Giraud R, Brunner K, Schmidt G, Molenkamp LW (2005) Tunneling anisotropic magnetoresistance: creating a spin-valve-like signal using a single ferromagnetic semiconductor layer. J Appl Phys 97, 10C506CrossRefGoogle Scholar
  130. 130.
    Pappert K, Schmidt MJ, Hümpfner S, Rüster C, Schott GM, Brunner K, Gould C, Schmidt G, Molenkamp LW (2006) Magnetization-switched metal-insulator transition in a (ga,mn)as tunnel device. Phys Rev Lett 97:186402. arXiv:cond-mat/0608683ADSCrossRefGoogle Scholar
  131. 131.
    Giddings AD, Khalid MN, Jungwirth T, Wunderlich J, Yasin S, Campion RP, Edmonds KW, Sinova J, Ito K, Wang KY, Williams D, Gallagher BL, Foxon CT (2005) Large tunneling anisotropic magnetoresistance in (ga,mn)as nanoconstrictions. Phys Rev Lett 94:127202. arXiv:cond-mat/0409209ADSCrossRefGoogle Scholar
  132. 132.
    Rüster C, Borzenko T, Gould C, Schmidt G, Molenkamp LW, Liu X, Wojtowicz TJ, Furdyna JK, Yu ZG, Flatté ME (2003) Very large magnetoresistance in lateral ferromagnetic (ga,mn)as wires with nanoconstrictions. Phys Rev Lett 91:216602. arXiv:cond-mat/0308385ADSCrossRefGoogle Scholar
  133. 133.
    Schlapps M, Doeppe M, Wagner K, Reinwald M, Wegscheider W, Weiss D (2006) Transport through (ga, mn)as nanoconstrictions. Phys Status Solidi A 203:3597ADSCrossRefGoogle Scholar
  134. 134.
    Wunderlich J, Jungwirth T, Novák V, Irvine AC, Kaestner B, Shick AB, Foxon CT, Campion RP, Williams DA, Gallagher BL (2007) Ordinary and extraordinary coulomb blockade magnetoresistance in (ga, mn)as single electron transistor. Solid State Commun 144:536ADSCrossRefGoogle Scholar
  135. 135.
    Schlapps M, Lermer T, Geissler S, Neumaier D, Sadowski J, Schuh D, Wegscheider W, Weiss D (2009) Transport through (ga,mn)as nanoislands: coulomb blockade and temperature dependence of the conductance. Phys Rev B 80:125330. arXiv:0904.3225ADSCrossRefGoogle Scholar
  136. 136.
    Hampton J, Eisenstein J, Pfeiffer L, West K (1995) Capacitance of two-dimensional electron systems subject to an in-plane magnetic field. Solid State Commun 94:559–562ADSCrossRefGoogle Scholar
  137. 137.
    Jungwirth T, Smrčka L (1995) Capacitance of gated GaAs/AlxGa1−xAs heterostructures subject to in-plane magnetic field. Phys Rev B 51:10181–10184ADSCrossRefGoogle Scholar
  138. 138.
    McCarthy KT, Hebard AF, Arnason SB (2003) Magnetocapacitance: probe of spin-dependent potentials. Phys Rev Lett 90:117201ADSCrossRefGoogle Scholar
  139. 139.
    Kaiju H, Fujita S, Morozumi T, Shiiki K (2002) Magnetocapacitance effect of spin tunneling junctions. J Appl Phys 91:7430–7432ADSCrossRefGoogle Scholar
  140. 140.
    Padhan P, LeClair P, Gupta A, Tsunekawa K, Djayaprawira DD (2007) Frequency-dependent magnetoresistance and magnetocapacitance properties of magnetic tunnel junctions with MgO tunnel barrier. Appl Phys Lett 90:142105ADSCrossRefGoogle Scholar
  141. 141.
    Chang Y-M, Li K-S, Huang H, Tung M-J, Tong S-Y, Lin M-T (2010) Extraction of the tunnel magneto-capacitance with two-terminal measurements. J Appl Phys 107:093904ADSCrossRefGoogle Scholar
  142. 142.
    Haigh JA, Ciccarelli C, Betz AC, Irvine A, Novák V, Jungwirth T, Wunderlich J (2015) Anisotropic magnetocapacitance in ferromagnetic-plate capacitors. Phys Rev B 91, 140409(R). doi:10.1103/PhysRevB.91.140409ADSCrossRefGoogle Scholar
  143. 143.
    Kopp T, Mannhart J (2009) Calculation of the capacitances of conductors: perspectives for the optimization of electronic devices. J Appl Phys 106:064504ADSCrossRefGoogle Scholar
  144. 144.
    Neumaier D, Turek M, Wurstbauer U, Vogl A, Utz M, Wegscheider W, Weiss D (2009) All-electrical measurement of the density of states in (ga, mn)as. Phys Rev Lett 103:087203ADSCrossRefGoogle Scholar
  145. 145.
    Ono K, Shimada H, Ootuka Y (1997) Enhanced magnetic valve effect and magneto-coulomb oscillations in ferromagnetic single electron transistor. J Physical Soc Japan 66:1261–1264ADSCrossRefGoogle Scholar
  146. 146.
    Ono K, Shimada H, Ootuka Y (1998) Ferromagnetic single electron transistor. Solid State Electron 42:1407–1411ADSCrossRefGoogle Scholar
  147. 147.
    Ono K, Shimada H, Ootuka Y (1997) Enhanced magnetic valve effect and magneto-coulomb oscillations in ferromagnetic single electron transistor. J Phys Soc Jpn 66:1261ADSCrossRefGoogle Scholar
  148. 148.
    Chappert C, Fert A, Van Dau FN (2007) The emergence of spin electronics in data storage. Nat Mater 6:813–823.
  149. 149.
    Olejník K, Novák V, Wunderlich J, Jungwirth T (2015) Electrical detection of magnetization reversal without auxiliary magnets. Phys Rev B 91:18. doi:10.1103/PhysRevB.91.180402CrossRefGoogle Scholar
  150. 150.
    Avci CO, Garello K, Ghosh A, Gabureac M, Alvarado SF, Gambardella P. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. arXiv:1502.06898v1Google Scholar
  151. 151.
    Chen L, Matsukura F, Ohno H (2013) Direct-current voltages in (Ga,Mn)As structures induced by ferromagnetic resonance. Nat Commun 4:2055.
  152. 152.
    Skinner TD, Olejnik K, Cunningham LK, Kurebayashi H, Campion RP, Gallagher BL, Jungwirth T, Ferguson AJ (2015) Complementary spin-Hall and inverse spin-galvanic effect torques in a ferromagnet/semiconductor bilayer. Nat Commun 6:6730ADSCrossRefGoogle Scholar
  153. 153.
    Nakayama H, Althammer M, Chen Y-T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprägs S, Opel M, Takahashi S, Gross R, Bauer GEW, Goennenwein STB, Saitoh E (2013) Spin hall magnetoresistance induced by a nonequilibrium proximity effect. Phys Rev Lett 110:206601. doi:10.1103/PhysRevLett.110.206601ADSCrossRefGoogle Scholar
  154. 154.
    Ralph D, Stiles M, Bader S (eds) (2008) Current perspectives: spin transfer torques. J Magn Magn Mater 320:1189Google Scholar
  155. 155.
    Zhang S, Li Z (2004) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93:127204ADSCrossRefGoogle Scholar
  156. 156.
    Vanhaverbeke A, Viret M (2007) Simple model of current-induced spin torque in domain walls. Phys Rev B 75:024411ADSCrossRefGoogle Scholar
  157. 157.
    Fernández-Rossier J, Núñez AS, Abolfath M, MacDonald AH (2003) Optical spin transfer in ferromagnetic semiconductors. arXiv:cond-mat/0304492Google Scholar
  158. 158.
    Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1ADSCrossRefGoogle Scholar
  159. 159.
    Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353ADSCrossRefGoogle Scholar
  160. 160.
    Metaxas PJ, Jamet JP, Mougin A, Cormier M, Ferre J, Baltz V, Rodmacq B, Dieny B, Stamps RL (2007) Creep and flow regimes of magnetic domain-wall motion in ultrathin pt/co/pt films with perpendicular anisotropy. Phys Rev Lett 99:217208ADSCrossRefGoogle Scholar
  161. 161.
    Mougin A, Cormier M, Adam JP, Metaxas PJ, Ferre J (2007) Domain wall mobility, stability and walker breakdown in magnetic nanowires. EPL 78:57007ADSCrossRefGoogle Scholar
  162. 162.
    Bernevig BA, Vafek O (2005) Piezo-magnetoelectric effects in p-doped semiconductors. Phys Rev B 72:033203ADSCrossRefGoogle Scholar
  163. 163.
    Manchon A, Zhang S (2009) Theory of spin torque due to spin-orbit coupling. Phys Rev B 79:094422ADSCrossRefGoogle Scholar
  164. 164.
    Garate I, MacDonald AH (2009) Influence of a transport current on magnetic anisotropy in gyrotropic ferromagnets. Phys Rev B 80:134403. arXiv:0905.3856ADSCrossRefGoogle Scholar
  165. 165.
    Miron IM, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P (2010) Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater 9:230ADSGoogle Scholar
  166. 166.
    Gambardella P, Miron IM (2011) Current-induced spin-orbit torques. Phil Trans R Soc A 369:3175ADSCrossRefGoogle Scholar
  167. 167.
    Manchon A, Zhang S (2008) Theory of nonequilibrium intrinsic spin torque in a single nanomagnet. Phys Rev B 78:212405ADSCrossRefGoogle Scholar
  168. 168.
    Miron IM, Moore T, Szambolics H, Bud Prejbeanu LD, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G (2011) Fast current-induced domain-wall motion controlled by the Rashba effect. Nat Mater 10:419ADSCrossRefGoogle Scholar
  169. 169.
    Ohno H, Dietl T (2008) Spin-transfer physics and the model of ferromagnetism in (ga,mn)as. J Magn Magn Mater 320:1293. arXiv:0712.3247ADSCrossRefGoogle Scholar
  170. 170.
    Chiba D, Yamanouchi M, Matsukura F, Dietl T, Ohno H (2006) Domain-wall resistance in ferromagnetic (ga,mn)as. Phys Rev Lett 96:096602. arXiv:cond-mat/0601464ADSCrossRefGoogle Scholar
  171. 171.
    Thiaville A, Nakatani Y, Miltat J, Suzuki Y (2005) Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys Lett 69:990ADSCrossRefGoogle Scholar
  172. 172.
    Roy PE, Wunderlich J (2011) In-plane magnetic anisotropy dependence of critical current density, walker field and domain-wall velocity in a stripe with perpendicular anisotropy. Appl Phys Lett 99:122504ADSCrossRefGoogle Scholar
  173. 173.
    Kurebayashi H, Sinova J, Fang D, Irvine AC, Skinner TD, Wunderlich J, Novak V, Campion RP, Gallagher BL, Vehstedt EK, Zarbo LP, Vyborny K, Ferguson AJ, Jungwirth T (2014) An anti-damping spinorbit torque originating from the berry curvature. Nat Nanotechnol 9:211. arXiv:1306.1893ADSCrossRefGoogle Scholar
  174. 174.
    Mizukami S, Ando Y, Miyazaki T (2001) The study on ferromagnetic resonance linewidth for nm/80nife/nm (nm=cu, ta, pd and pt) films. Jpn J Appl Phys 40:580ADSCrossRefGoogle Scholar
  175. 175.
    Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375. arXiv:cond-mat/0409242ADSCrossRefGoogle Scholar
  176. 176.
    Hals KMD, Brataas A, Tserkovnyak Y (2010) Scattering theory of charge-current-induced magnetization dynamics. Euro Phys Lett 90:47002. arXiv:0905.4170ADSCrossRefGoogle Scholar
  177. 177.
    Tatara G, Nakabayashi N, Lee KJ (2013) Spin motive force induced by Rashba interaction in the strong sd coupling regime. Phys Rev B 87:054403ADSCrossRefGoogle Scholar
  178. 178.
    Ciccarelli C, Hals KMD, Irvine A, Novak V, Tserkovnyak Y, Kurebayashi H, Brataas A, Ferguson A (2014) Magnonic charge pumping via spin orbit coupling. Nat Nanotechnol 10:50–54, 10.1038/nnano.2014.252ADSCrossRefGoogle Scholar
  179. 179.
    Núñez AS, Fernández-Rossier J, Abolfath M, MacDonald AH (2004) Optical control of the magnetization damping in ferromagnetic semiconductors. J Magn Magn Mater 272–276:1913CrossRefGoogle Scholar
  180. 180.
    Oiwa A, Takechi H, Munekata H (2005) Photoinduced magnetization rotation and precessional motion of magnetization in ferromagnetic (Ga, Mn)As. J Supercond Nov Magn 18:9ADSCrossRefGoogle Scholar
  181. 181.
    Wang DM, Ren YH, Liu X, Furdyna JK, Grimsditch M, Merlin R (2007) Light-induced magnetic precession in (Ga,Mn)As slabs: hybrid standing-wave damoneshbach modes. Phys Rev B 75:233308. arXiv:cond-mat/0609646ADSCrossRefGoogle Scholar
  182. 182.
    Takechi H, Oiwa A, Nomura K, Kondo T, Munekata H (2007) Light-induced precession of ferromagnetically coupled Mn spins in ferromagnetic (Ga, Mn)As. Phys Status Solidi C 3:4267ADSCrossRefGoogle Scholar
  183. 183.
    Qi J, Xu Y, Tolk NH, Liu X, Furdyna JK, Perakis IE (2007) Coherent magnetization precession in GaM-nAs induced by ultrafast optical excitation. Appl Phys Lett 91:112506ADSCrossRefGoogle Scholar
  184. 184.
    Qi J, Xu Y, Steigerwald A, Liu X, Furdyna JK, Perakis IE, Tolk NH (2009) Ultrafast laser-induced coherent spin dynamics in ferromagnetic Ga1−xMnxAs/GaAs structures. Phys Rev B 79:085304ADSCrossRefGoogle Scholar
  185. 185.
    Rozkotova E, Nemec P, Horodyska P, Sprinzl D, Trojanek F, Maly P, Novak V, Olejnik K, Cukr M, Jungwirth T (2008) Light-induced magnetization precession in GaMnAs. Appl Phys Lett 92:122507. arXiv:0802.2043ADSCrossRefGoogle Scholar
  186. 186.
    Rozkotová E, Němec P, Tesařová N, Malý P, Novák V, Olejník K, Cukr M, Jungwirth T (2008) Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As. Appl Phys Lett 93:232505. arXiv:0808.3738ADSCrossRefGoogle Scholar
  187. 187.
    Hashimoto Y, Munekata H (2008) Coherent manipulation of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As with successive optical pumping. Appl Phys Lett 93:202506. arXiv:0810.3728ADSCrossRefGoogle Scholar
  188. 188.
    Hashimoto Y, Kobayashi S, Munekata H (2008) Photoinduced precession of magnetization in ferromagnetic (Ga, Mn)As. Phys Rev Lett 100:067202ADSCrossRefGoogle Scholar
  189. 189.
    Kobayashi S, Suda K, Aoyama J, Nakahara D, Munekata H (2010) Photo-induced precession of magnetization in metal/(Ga, Mn)As systems. IEEE Trans Magn 46:2470ADSCrossRefGoogle Scholar
  190. 190.
    Ramsay AJ, Roy PE, Haigh JA, Otxoa RM, Irvine AC, Janda T, Campion RP, Gallagher BL, Wunderlich J (2015) Optical Spin-Transfer-Torque-Driven Domain-Wall Motion in a Ferromagnetic Semiconductor. Phys Rev Lett 114:067202ADSCrossRefGoogle Scholar
  191. 191.
    Wang J, Sun C, Hashimoto Y, Kono J, Khodaparast GA, Cywinski L, Sham LJ, Sanders GD, Stanton CJ, Munekata H (2006) Ultrafast magneto-optics in ferromagnetic III-V semiconductors. J Phys Condens Matter 18:R501ADSCrossRefGoogle Scholar
  192. 192.
    Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phys 82:2731ADSCrossRefGoogle Scholar
  193. 193.
    Lingos PC, Wang J, Perakis IE (2015) Manipulating femtosecond spin−orbit torques with laser pulse sequences to control magnetic memory states and ringing. Phys Rev B 91:195203.

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Physics ASCR, v.v.i.Praha 6Czech Republic
  2. 2.School of Physics and AstronomyUniversity of NottinghamNottinghamUK

Personalised recommendations