Theory of Giant Magnetoresistance and Tunneling Magnetoresistance

  • Xiaoguang ZhangEmail author
  • William Butler
Reference work entry


This chapter describes the theory of the giant magnetoresistance effect and the tunneling magnetoresistance effect. Giant magnetoresistance and tunneling magnetoresistance arise when a magnetic field reorients the magnetization in different regions of a specimen causing a change in electrical resistance. Typically these regions are different ultrathin layers. Giant magnetoresistance can occur in metallic multilayers. Two geometries are important. Current-in-plane GMR was the first “spintronic” effect and was discovered in 1988. Current-perpendicular-to-plane GMR was observed a few years later and is conceptually easier to understand than current-in-plane GMR. In this chapter both of these phenomena are treated in a semiclassical approximation. For current-in-plane GMR, it is necessary to treat the transport as nonlocal. For current-perpendicular-to-plane GMR, a local approximation is often adequate. Tunneling magnetoresistance arises when quantum mechanical tunneling between ferromagnetic electrodes through an insulating layer depends on the relative orientation of the magnetizations of the two electrodes. In this chapter, tunneling magnetoresistance is treated using the Landauer approach which envisions ballistic electrons traveling between reservoirs with given chemical potentials being transmitted or reflected by the insulating layer. The tunneling current through the layer is carried by the evanescent states. The properties of these evanescent states and how they join to those electronic states near the Fermi energy of the electrodes for the majority and minority spin channels can be important for the size of the tunneling magnetoresistance effect.

List of Abbreviations




Body-centered cubic






Free electrons with random point scatterers




Giant magnetoresistance




Magnetic tunnel junction




Synthetic antiferromagnet


Tunneling magnetoresistance


X-ray magnetic circular dichroism


  1. 1.
    Dirac PAM (1928) The quantum theory of the electron. Proc R Soc Lond A 117:610–624CrossRefADSzbMATHGoogle Scholar
  2. 2.
    Grünberg P, Schreiber R, Pang Y, Brodsky MB, Sowers H (1986) Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys Rev Lett 57(19):2442–2445CrossRefADSGoogle Scholar
  3. 3.
    Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J (1988) Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475CrossRefADSGoogle Scholar
  4. 4.
    Binasch G, Grünberg P, Saurenbach F, Zinn W (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39(7):4828–4830CrossRefADSGoogle Scholar
  5. 5.
    Pratt WP, Lee S-F, Slaughter JM, Loloee R, Schroeder PA, Bass J (1991) Perpendicular giant magnetoresistances of Ag/Co multilayers. Phys Rev Lett 66(23):3060–3063CrossRefADSGoogle Scholar
  6. 6.
    Bozorth RM (1951) Ferromagnetism. D. van Norstrand, New York, p 441Google Scholar
  7. 7.
    Chikazumi S (1964) Physics of magnetism. Wiley, New York, p 73Google Scholar
  8. 8.
    van den Berg HAM, Clemens W, Gieres G, Rupp G, Schelter W, Vieth M (1996) GMR sensor scheme with artificial antiferromagnetic subsystem. IEEE Trans Magn 32(5):4624–4626CrossRefADSGoogle Scholar
  9. 9.
    Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48(10):7099–7113CrossRefADSGoogle Scholar
  10. 10.
    Mark J, Silsbee RH (1987) Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys Rev B 35(10):4959–4972CrossRefGoogle Scholar
  11. 11.
    Zhang X-G, Butler WH (1995) Conductivity of metallic films and multilayers. Phys Rev B 51(15):10085–10103CrossRefADSGoogle Scholar
  12. 12.
    Chambers RG (1950) The conductivity of thin wires in a magnetic field. Proc R Soc A 202(1070):378–394MathSciNetCrossRefADSzbMATHGoogle Scholar
  13. 13.
    Camblong HE, Levy PM (1992) Novel results for quasiclassical linear transport in metallic multilayers. Phys Rev Lett 69(19):2835–2838CrossRefADSGoogle Scholar
  14. 14.
    Fuchs K (1938) The conductivity of thin metallic films according to the electron theory of metals. Math Proc Camb Philos Soc 34(1):100–108CrossRefADSGoogle Scholar
  15. 15.
    Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1(1):1–42CrossRefADSGoogle Scholar
  16. 16.
    MacLaren JM, Zhang X-G, Butler WH, Wang X (1999) Layer KKR approach to Bloch-wave transmission and reflection: application to spin-dependent tunneling. Phys Rev B 59(8):5470–5478CrossRefADSGoogle Scholar
  17. 17.
    Butler WH, Zhang X-G, Nicholson DMC, Schulthess TC, MacLaren JM (1996) Giant magnetoresistance from an electron waveguide effect in cobalt-copper multilayers. Phys Rev Lett 76(17):3216–3219CrossRefADSGoogle Scholar
  18. 18.
    Butler WH, Zhang X-G, MacLaren JM (2000) Solution to the boltzmann equation for layered systems for current perpendicular to the planes. J Appl Phys 87(9):5173–5175CrossRefADSGoogle Scholar
  19. 19.
    Stewart DA, Butler WH, Zhang X-G, Los VF (2003) Interfacial scattering in magnetic multilayers and spin valves. Phys Rev B 68(1):014433CrossRefADSGoogle Scholar
  20. 20.
    Julliere M (1975) Tunneling between ferromagnetic films. Phys Lett A 54(1):225–226CrossRefADSGoogle Scholar
  21. 21.
    Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1(3):223–231MathSciNetCrossRefGoogle Scholar
  22. 22.
    Slonczewski JC (1989) Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys Rev B 39(10):6995–7002CrossRefADSGoogle Scholar
  23. 23.
    Butler WH, Zhang X-G, Schulthess TC, MacLaren JM (2001) Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys Rev B 63(5):054416CrossRefADSGoogle Scholar
  24. 24.
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3(12):868–871CrossRefADSGoogle Scholar
  25. 25.
    Zhang X-G, Yan W, Han XF (2008) Theory of nonspecular tunneling through magnetic tunnel junctions. Phys Rev B 77(14):144431CrossRefADSGoogle Scholar
  26. 26.
    Matsumoto R, Fukushima A, Nagahama T, Suzuki Y, Ando K, Yuasa S (2007) Oscillation of giant tunneling magnetoresistance with respect to tunneling barrier thickness in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions. Appl Phys Lett 90(25):252506CrossRefADSGoogle Scholar
  27. 27.
    Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH (2004) Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater 3(12):862–867CrossRefADSGoogle Scholar
  28. 28.
    Yuasa S, Djayaprawira DD (2007) Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier. J Phys D Appl Phys 40(21):R337–R354CrossRefADSGoogle Scholar
  29. 29.
    Yuasa S, Suzuki Y, Katayama T, Ando K (2005) Characterization of growth and crystallization processes in CoFeB/MgO/CoFeB magnetic tunnel junction structure by reflective high-energy electron diffraction. Appl Phys Lett 87(24):242503CrossRefADSGoogle Scholar
  30. 30.
    Cha JJ, Read JC, Buhrman RA, Muller DA (2007) Spatially resolved electron energy-loss spectroscopy of electron-beam grown and sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl Phys Lett 91(6):062516CrossRefADSGoogle Scholar
  31. 31.
    Read JC, Cha JJ, Egelhoff WF Jr, Tseng HW, Huang PY, Li Y, Muller DA, Buhrman RA (2009) High magnetoresistance tunnel junctions with MgBO barriers and NiFeB free electrodes. Appl Phys Lett 94(11):112504CrossRefADSGoogle Scholar
  32. 32.
    Yuasa S, Katayama T, Nagahama T, Fukushima A, Kubota H, Suzuki Y, Ando K (2005) Giant tunneling magnetoresistance in fully epitaxial body-centered-cubic Co/MgO/Fe magnetic tunnel junctions. Appl Phys Lett 87(24):222508CrossRefADSGoogle Scholar
  33. 33.
    Yuasa S, Fukushima A, Kubota H, Suzuki Y, Ando K (2006) Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial Co/MgO/Co magnetic tunnel junctions with bcc Co(001) electrodes. Appl Phys Lett 89(4):042505CrossRefADSGoogle Scholar
  34. 34.
    Yan W, Han XF, Zhang X-G (2008) Effect of Co interlayers in Fe/MgO/Fe magnetic tunnel junctions. Appl Phys Lett 93(17):172501CrossRefADSGoogle Scholar
  35. 35.
    Belashchenko KD, Velev J, Tsymbal EY (2005) Effect of interface states on spin-dependent tunneling in Fe/MgO/Fe tunnel junctions. Phys Rev B 72(14):140404CrossRefADSGoogle Scholar
  36. 36.
    Wang Y, Jia Z, Zhang X-G, Hai-Ping C, Han XF (2010) First-principles study of Fe/MgO based magnetic tunnel junctions with Mg interlayers. Phys Rev B 82(5):054405CrossRefADSGoogle Scholar
  37. 37.
    Jia Z, Zhang X-G, Han XF (2012) Spinel oxides: 1 spin-filter barrier for a class of magnetic tunnel junctions. Appl Phys Lett 100(22):222401CrossRefADSGoogle Scholar
  38. 38.
    Sukegawa H, Xiu H, Ohkubo T, Furubayashi T, Niizeki T, Wang W, Kasai S, Mitani S, Inomata K, Hono K (2010) Tunnel magnetoresistance with improved bias voltage dependence in lattice-matched Fe/spinel MgAl2O4/Fe(001) junctions. Appl Phys Lett 96(21):212505CrossRefADSGoogle Scholar
  39. 39.
    Gurney BA, Speriosu VS, Nozieres J-P, Lefakis H, Wilhoit DR, Need OU (1993) Direct measurement of spin-dependent conduction-electron mean free paths in ferromagnetic metals. Phys Rev Lett 71(24):4023–4026CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Physics and Quantum Theory ProjectUniversity of FloridaGainesvilleUSA
  2. 2.Computer Science and Mathematics Division and Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  3. 3.MINT Center, University of AlabamaTuscaloosaUSA

Personalised recommendations