Skip to main content

Hybrid Ferromagnetic/Ferroelectric Materials

  • Reference work entry
Handbook of Spintronics

Abstract

Studies of coupled magnetic and ferroelectric phases have significantly intensified in the last decade, motivated by fundamental questions about ferroic order coexistence and their potential for nanoelectronics. Hybrid ferromagnetic/ferroelectric materials in which magnetoelectric interactions arise from charge modulation, exchange coupling, or strain transfer at composite interfaces are particularly promising because they allow for electric-field control of magnetism at temperatures that are compatible with practical device applications. In this chapter, recent developments in this field are reviewed, with emphasis on magnetoelectric coupling in thin-film heterostructures, ferromagnetic/ferroelectric domain interactions, and electronic transport in ferroelectric tunnel junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FMR:

Ferromagnetic resonance

FTJ:

Ferroelectric tunnel junction

ME:

Magnetoelectric

MERAM:

Magnetoelectric random access memory

MRAM:

Magnetic random access memory

MTJ:

Magnetic tunnel junction

PEEM:

Photoemission electron microscopy

PFM:

Piezoresponse force microscopy

SQUID:

Superconducting quantum interference device

STT:

Spin transfer torque

TER:

Tunneling electroresistance

TMR:

Tunneling magnetoresistance

VSM:

Vibrating sample magnetometry

XANES:

X-ray absorption near edge spectroscopy

XMCD:

X-ray magnetic circular dichroism

References

  1. Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694

    Article  Google Scholar 

  2. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:123

    Article  ADS  Google Scholar 

  3. Prellier W, Singh MP, Murugavel P (2005) The single-phase multiferroic oxides: from bulk to thin film. J Phys Condens Matter 17:803

    Article  ADS  Google Scholar 

  4. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759

    Article  ADS  Google Scholar 

  5. Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21

    Article  ADS  Google Scholar 

  6. Kimura T (2007) Spiral magnets as magnetoelectrics. Ann Rev Mater Sci 37:387

    Article  ADS  Google Scholar 

  7. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463

    Article  Google Scholar 

  8. Wang KF, Liu J-M, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders. Adv Physiol Educ 58:321

    ADS  Google Scholar 

  9. Khomskii D (2009) Classifying multiferroics: mechanisms and effects. Physics 2:20

    Article  Google Scholar 

  10. Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar AA, Shinjo T, Shiraishi M, Mizukami S, Ando Y, Suzuki Y (2009) Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotechnol 4:158

    Article  ADS  Google Scholar 

  11. Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T (2011) Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater 10:853

    Article  ADS  Google Scholar 

  12. Shiota Y, Nozaki T, Bonell F, Murakami S, Shinjo T, Suzuki Y (2012) Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat Mater 11:39

    Article  ADS  Google Scholar 

  13. Wang W-G, Li M, Hageman S, Chien CL (2012) Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater 11:64

    Article  ADS  Google Scholar 

  14. Nozaki T, Shiota Y, Miwa S, Murakami S, Bonell F, Ishibashi S, Kubota H, Yakushiji K, Saruya T, Fukushima A, Yuasa S, Shinjo T, Suzuki Y (2012) Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat Phys 8:492

    Article  Google Scholar 

  15. Bauer U, Emori S, Beach GSD (2012) Electric field control of domain wall propagation in Pt/Co/GdOx films. Appl Phys Lett 100:192408

    Article  ADS  Google Scholar 

  16. Schellekens AJ, van den Brink A, Franken JH, Swagten HJM, Koopmans B (2012) Electric-field control of domain wall motion in perpendicularly magnetized materials. Nat Commun 3:847

    Article  ADS  Google Scholar 

  17. Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K, Kobayashi K, Ono T (2012) Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nat Commun 3:888

    Article  ADS  Google Scholar 

  18. Bauer U, Emori S, Beach GSD (2013) Voltage-controlled domain wall traps in ferromagnetic nanowires. Nat Nanotechnol 8:411

    Article  ADS  Google Scholar 

  19. Bauer U, Yao L, Tan AJ, Agrawal P, Emori S, Tuller HL, van Dijken S, Beach GSD (2015) Magneto-ionic control of interfacial magnetism. Nat Mater 14:174

    Article  ADS  Google Scholar 

  20. Vaz CAF, Hoffman J, Ahn CH, Ramesh R (2010) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater 22:2900

    Article  Google Scholar 

  21. Ma J, Hu J, Li Z, Nan C-W (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater 23(1062)

    Google Scholar 

  22. Vaz CAF (2012) Electric field control of magnetism in multiferroic heterostructures. J Phys Condens Matter 24:333201

    Article  Google Scholar 

  23. Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303:661

    Article  ADS  Google Scholar 

  24. Li J, Levin I, Slutsker J, Provenzano V, Schenck PK, Ramesh R, Ouyang J, Roytburd AL (2005) Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system. Appl Phys Lett 87:072909

    Article  ADS  Google Scholar 

  25. Zavaliche F, Zheng H, Mohaddes-Ardabili L, Yang SY, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom DG, Suzuki Y, Ramesh R (2005) Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett 5:1793

    Article  ADS  Google Scholar 

  26. Levin I, Li J, Slutsker J, Roytburd AL (2006) Design of self-assembled multiferroic nanostructures in epitaxial films. Adv Mater 18:2044

    Article  Google Scholar 

  27. Zheng H, Straub F, Zhan Q, Yang P-L, Hsieh W-K, Zavaliche F, Chu Y-H, Dahmen U, Ramesh R (2006) Self-assembled growth of BiFeO3-CoFe2O4 nanostructures. Adv Mater 18:2747

    Article  Google Scholar 

  28. Zhan Q, Yu R, Crane SP, Zheng H, Kisielowski C, Ramesh R (2006) Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl Phys Lett 89:172902

    Article  ADS  Google Scholar 

  29. Slutsker J, Levin I, Li J, Artemev A, Roytburd AL (2006) Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys Rev B 73:184127

    Article  ADS  Google Scholar 

  30. Dix N, Muralidharan R, Guyonnet J, Warot-Fonrose B, Varela M, Paruch P, Sánchez F, Fontcuberta J (2009) On the strain coupling across vertical interfaces of switchable BiFeO3-CoFe2O4 multiferroic nanostructures. Appl Phys Lett 95:062907

    Article  ADS  Google Scholar 

  31. Weal E, Patnaik S, Bi Z, Wang H, Fix T, Kursumovic A, Driscoll JLM (2010) Coexistence of strong ferromagnetism and polar switching at room temperature in Fe3O4-BiFeO3 nanocomposite thin films. Appl Phys Lett 97:153121

    Article  ADS  Google Scholar 

  32. Aimon NM, Hun Kim D, Kyoon Choi H, Ross CA (2012) Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl Phys Lett 100:092901

    Article  ADS  Google Scholar 

  33. Kim DH, Aimon NM, Sun X, Ross CA (2014) Compositionally modulated magnetic epitaxial spinel/perovskite nanocomposite thin films. Adv Funct Mater 24:2334

    Article  Google Scholar 

  34. Kim DH, Aimon NM, Sun XY, Kornblum L, Walker FJ, Ahn CH, Ross CA (2014) Integration of self-assembled epitaxial BiFeO3-CoFe2O4 multiferroic nanocomposites on silicon substrates. Adv Funct Mater 24:5889

    Article  Google Scholar 

  35. Gao X, Rodriguez BJ, Liu L, Birajdar B, Pantel D, Ziese M, Alexe M, Hesse D (2010) Microstructure and properties of well-ordered multiferroic Pb(Zr, Ti)O3/CoFe2O4 nanocomposites. ACS Nano 4:1099

    Article  Google Scholar 

  36. Vrejoiu I, Morelli A, Biggemann D, Pippel E (2011) Ordered arrays of multiferroic epitaxial nanostructures. Nano Rev 2:7364

    Article  Google Scholar 

  37. Vrejoiu I, Preziosi D, Morelli A, Pippel E (2012) Multiferroic PbZrxTi1-xO3/Fe3O4 epitaxial sub-micron sized structures. Appl Phys Lett 100:102903

    Article  ADS  Google Scholar 

  38. Choi HK, Aimon NM, Kim DH, Sun XY, Gwyther J, Manners I, Ross CA (2014) Hierarchical templating of a BiFeO3-CoFe2O4 multiferroic nanocomposite by a triblock terpolymer film. ACS Nano 8:9248

    Article  Google Scholar 

  39. Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP (2005) Magnetic domain-wall logic. Science 309:1688

    Article  ADS  Google Scholar 

  40. Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190

    Article  ADS  Google Scholar 

  41. Binek C, Doudin B (2005) Magnetoelectronics with magnetoelectrics. J Phys Condens Matter 17:L39

    Article  ADS  Google Scholar 

  42. Bibes M, Barthélémy A (2008) Multiferroics: towards a magnetoelectric memory. Nat Mater 7:425

    Article  ADS  Google Scholar 

  43. Hu J-M, Li Z, Chen L-Q, Nan C-W (2011) High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat Commun 2:553

    Article  ADS  Google Scholar 

  44. Hu J-M, Li Z, Chen L-Q, Nan C-W (2012) Design of a voltage-controlled magnetic random access memory based on anisotropic magnetoresistance in a single magnetic layer. Adv Mater 24:2869

    Article  Google Scholar 

  45. Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthélémy A, Fert A (2007) Tunnel junctions with multiferroic barriers. Nat Mater 6:296

    Article  ADS  Google Scholar 

  46. Scott JF (2007) Data storage: multiferroic memories. Nat Mater 6:256

    Article  ADS  Google Scholar 

  47. Velev JP, Duan C-G, Burton JD, Smogunov A, Niranjan MK, Tosatti E, Jaswal SS, Tsymbal EY (2009) Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance states from first principles. Nano Lett 9:427

    Article  ADS  Google Scholar 

  48. Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur ND, Fusil S, Bouzehouane K, Barthélémy A (2010) Ferroelectric control of spin polarization. Science 327:1106

    Article  ADS  Google Scholar 

  49. Pantel D, Goetze S, Hesse D, Alexe M (2012) Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat Mater 11:289

    Article  ADS  Google Scholar 

  50. Lou J, Liu M, Reed D, Ren Y, Sun NX (2009) Giant electric field tuning of magnetism in novel multiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) heterostructures. Adv Mater 21:4711

    Article  Google Scholar 

  51. Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer KS, Harris VG, Sun NX (2009) Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater 19:1826

    Article  Google Scholar 

  52. Liu M, Howe BM, Grazulis L, Mahalingam K, Nan T, Sun NX, Brown GJ (2013) Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv Mater 25:4886

    Article  Google Scholar 

  53. Duan C-G, Jaswal SS, Tsymbal EY (2006) Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett 97:047201

    Article  ADS  Google Scholar 

  54. Weisheit M, Fähler S, Marty A, Souche Y, Poinsignon C, Givord D (2007) Electric field induced modification of magnetism in thin-film ferromagnets. Science 315:349

    Article  ADS  Google Scholar 

  55. Yamauchi K, Sanyal B, Picozzi S (2007) Interface effects at a half-metal/ferroelectric junction. Appl Phys Lett 91:062506

    Article  ADS  Google Scholar 

  56. Fechner M, Maznichenko IV, Ostanin S, Ernst A, Henk J, Bruno P, Mertig I (2008) Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys Rev B 78:212406

    Article  ADS  Google Scholar 

  57. Niranjan MK, Velev JP, Duan C-G, Jaswal SS, Tsymbal EY (2008) Magnetoelectric effect at the Fe3O4/BaTiO3 (001) interface: a first-principles study. Phys Rev B 78:104405

    Article  ADS  Google Scholar 

  58. Duan C-G, Velev JP, Sabirianov RF, Zhu Z, Chu J, Jaswal SS, Tsymbal EY (2008) Surface magnetoelectric effect in ferromagnetic metal films. Phys Rev Lett 101:137201

    Article  ADS  Google Scholar 

  59. Duan C-G, Velev JP, Sabirianov RF, Mei WN, Jaswal SS, Tsymbal EY (2008) Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl Phys Lett 92:122905

    Article  ADS  Google Scholar 

  60. Nakamura K, Shimabukuro R, Fujiwara Y, Akiyama T, Ito T, Freeman AJ (2009) Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys Rev Lett 102:187201

    Article  ADS  Google Scholar 

  61. Tsujikawa M, Oda T (2009) Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): a first-principles study. Phys Rev Lett 102:247203

    Article  ADS  Google Scholar 

  62. Lee J, Sai N, Cai T, Niu Q, Demkov AA (2010) Interfacial magnetoelectric coupling in tricomponent superlattices. Phys Rev B 81:144425

    Article  ADS  Google Scholar 

  63. Meyerheim HL, Klimenta F, Ernst A, Mohseni K, Ostanin S, Fechner M, Parihar S, Maznichenko IV, Mertig I, Kirschner J (2011) Structural secrets of multiferroic interfaces. Phys Rev Lett 106:087203

    Article  ADS  Google Scholar 

  64. Bocher L, Gloter A, Crassous A, Garcia V, March K, Zobelli A, Valencia S, Enouz-Vedrenne S, Moya X, Marthur ND, Deranlot C, Fusil S, Bouzehouane K, Bibes M, Barthélémy A, Colliex C, Stéphan O (2012) Atomic and electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions. Nano Lett 12:376

    Article  ADS  Google Scholar 

  65. Borek S, Maznichenko IV, Fischer G, Hergert W, Mertig I, Ernst A, Ostanin S, Chassé A (2012) First-principles calculation of x-ray absorption spectra and x-ray magnetic circular dichroism of ultrathin Fe films on BaTiO3(001). Phys Rev B 85:134432

    Article  ADS  Google Scholar 

  66. Dai J-Q, Song Y-M, Zhang H (2012) Enhancement of magnetoelectric effect by combining different interfacial coupling mechanisms. J Appl Phys 111:114301

    Article  ADS  Google Scholar 

  67. Borisov VS, Ostanin S, Maznichenko IV, Ernst A, Mertig I (2014) Magnetoelectric properties of the Co/PbZrxTi1-xO3 (001) interface studied from first principles. Phys Rev B 89:054436

    Article  ADS  Google Scholar 

  68. Radaelli G, Petti D, Plekhanov E, Fina I, Torelli P, Salles BR, Cantoni M, Rinaldi C, Gutiérrez D, Panaccione G, Varela M, Picozzi S, Fontcuberta J, Bertacco R (2014) Electric control of magnetism at the Fe/BaTiO3 interface. Nat Commun 5:3404

    Article  ADS  Google Scholar 

  69. Brovko OO, Ruiz-Daz P, Dasa TR, Stepanyuk VS (2014) Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging. J Phys Condens Matter 26:093001

    Article  Google Scholar 

  70. Burton JD, Tsymbal EY (2009) Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys Rev B 80:174406

    Article  ADS  Google Scholar 

  71. Burton JD, Tsymbal EY (2011) Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface. Phys Rev Lett 106:157203

    Article  ADS  Google Scholar 

  72. Dong S, Dagotto E (2013) Full control of magnetism in a manganite bilayer by ferroelectric polarization. Phys Rev B 88:140404

    Article  ADS  Google Scholar 

  73. Chen H, Qiao Q, Marshall MSJ, Georgescu AB, Gulec A, Phillips PJ, Klie RF, Walker FJ, Ahn CH, Ismail-Beigi S (2014) Reversible modulation of orbital occupations via an interface-induced polar state in metallic manganites. Nano Lett 14:4965

    Article  ADS  Google Scholar 

  74. Hong X, Posadas A, Lin A, Ahn CH (2003) Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1-xSrxMnO3. Phys Rev B 68:134415

    Article  ADS  Google Scholar 

  75. Hong X, Posadas A, Ahn CH (2005) Examining the screening limit of field effect devices via the metal-insulator transition. Appl Phys Lett 86:142501

    Article  ADS  Google Scholar 

  76. Kanki T, Tanaka H, Kawai T (2006) Electric control of room temperature ferromagnetism in a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3 field-effect transistor. Appl Phys Lett 89:242506

    Article  ADS  Google Scholar 

  77. Molegraaf HJA, Hoffman J, Vaz CAF, Gariglio S, van der Marel D, Ahn CH, Triscone J-M (2009) Magnetoelectric effects in complex oxides with competing ground states. Adv Mater 21:3470

    Article  Google Scholar 

  78. Dhoot AS, Israel C, Moya X, Mathur ND, Friend RH (2009) Large electric field effect in electrolyte-gated manganites. Phys Rev Lett 102:136402

    Article  ADS  Google Scholar 

  79. Vaz CAF, Hoffman J, Segal Y, Reiner JW, Grober RD, Zhang Z, Ahn CH, Walker FJ (2010) Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys Rev Lett 104:127202

    Article  ADS  Google Scholar 

  80. Vaz CAF, Segal Y, Hoffman J, Grober RD, Walker FJ, Ahn CH (2010) Temperature dependence of the magnetoelectric effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Appl Phys Lett 97:042506

    Article  ADS  Google Scholar 

  81. Brivio S, Cantoni M, Petti D, Bertacco R (2010) Near-room-temperature control of magnetization in field effect devices based on La0.67Sr0.33MnO3 thin films. J Appl Phys 108:113906

    Article  ADS  Google Scholar 

  82. Dong S, Zhang X, Yu R, Liu J-M, Dagotto E (2011) Microscopic model for the ferroelectric field effect in oxide heterostructures. Phys Rev B 84:155117

    Article  ADS  Google Scholar 

  83. Chen H, Ismail-Beigi S (2012) Ferroelectric control of magnetization in La1-xSrxMnO3 manganites: a first-principles study. Phys Rev B 86:024433

    Article  ADS  Google Scholar 

  84. Lu H, George TA, Wang Y, Ketsman I, Burton JD, Bark C-W, Ryu S, Kim DJ, Wang J, Binek C, Dowben PA, Sokolov A, Eom C-B, Tsymbal EY, Gruverman A (2012) Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces. Appl Phys Lett 100:232904

    Article  ADS  Google Scholar 

  85. Yin YW, Burton JD, Kim Y-M, Borisevich AY, Pennycook SJ, Yang SM, Noh TW, Gruverman A, Li XG, Tsymbal EY, Li Q (2013) Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nat Mater 12:397

    Article  ADS  Google Scholar 

  86. Jiang L, Choi WS, Jeen H, Dong S, Kim Y, Han M-G, Zhu Y, Kalinin SV, Dagotto E, Egami T, Lee HN (2013) Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures. Nano Lett 13:5837

    Article  ADS  Google Scholar 

  87. Yi D, Liu J, Okamoto S, Jagannatha S, Chen Y-C, Yu P, Chu Y-H, Arenholz E, Ramesh R (2013) Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling. Phys Rev Lett 111:127601

    Article  ADS  Google Scholar 

  88. Leufke PM, Kruk R, Brand RA, Hahn H (2013) In situ magnetometry studies of magnetoelectric LSMO/PZT heterostructures. Phys Rev B 87:094416

    Article  ADS  Google Scholar 

  89. Preziosi D, Fina I, Pippel E, Hesse D, Marti X, Bern F, Ziese M, Alexe M (2014) Tailoring the interfacial magnetic anisotropy in multiferroic field-effect devices. Phys Rev B 90:125155

    Article  ADS  Google Scholar 

  90. Ma X, Kumar A, Dussan S, Zhai H, Fang F, Zhao HB, Scott JF, Katiyar RS, Lüpke G (2014) Charge control of antiferromagnetism at PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3 interface. Appl Phys Lett 104:132905

    Article  ADS  Google Scholar 

  91. Kim Y-M, Morozovska A, Eliseev E, Oxley MP, Mishra R, Selbach SM, Grande T, Pantelides ST, Kalinin SV, Borisevich AY (2014) Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1-xMnO3 interface. Nat Mater 13:1019

    Article  ADS  Google Scholar 

  92. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K (2000) Electric-field control of ferromagnetism. Nature 408:944

    Article  ADS  Google Scholar 

  93. Park YD, Hanbicki AT, Erwin SC, Hellberg CS, Sullivan JM, Mattson JE, Ambrose TF, Wilson A, Spanos G, Jonker BT (2002) A group-IV ferromagnetic semiconductor: MnxGe1-x. Science 295:651

    Article  ADS  Google Scholar 

  94. Chiba D, Yamanouchi M, Matsukura F, Ohno H (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301:943

    Article  ADS  Google Scholar 

  95. Kneip MK, Yakovlev DR, Bayer M, Slobodskyy T, Schmidt G, Molenkamp LW (2006) Electric field control of magnetization dynamics in ZnMnSe/ZnBeSe diluted-magnetic semiconductor heterostructures. Appl Phys Lett 88:212105

    Article  ADS  Google Scholar 

  96. Stolichnov I, Riester SWE, Trodahl HJ, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T (2008) Non-volatile ferroelectric control of ferromagnetism in (Ga, Mn)As. Nat Mater 7:464

    Article  ADS  Google Scholar 

  97. Chiba D, Sawicki M, Nishitani Y, Nakatani Y, Matsukura F, Ohno H (2008) Magnetization vector manipulation by electric fields. Nature 455:515

    Article  ADS  Google Scholar 

  98. Riester SWE, Stolichnov I, Trodahl HJ, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T (2009) Toward a low-voltage multiferroic transistor: magnetic (Ga, Mn)As under ferroelectric control. Appl Phys Lett 94:063504

    Article  ADS  Google Scholar 

  99. Endo M, Chiba D, Shimotani H, Matsukura F, Iwasa Y, Ohno H (2010) Electric double layer transistor with a (Ga, Mn)As channel. Appl Phys Lett 96:022515

    Article  ADS  Google Scholar 

  100. Stolichnov I, Riester SWE, Mikheev E, Setter N, Rushforth AW, Edmonds KW, Campion RP, Foxon CT, Gallagher BL, Jungwirth T, Trodahl HJ (2011) Enhanced Curie temperature and nonvolatile switching of ferromagnetism in ultrathin (Ga, Mn)As channels. Phys Rev B 83:115203

    Article  ADS  Google Scholar 

  101. Mikheev E, Stolichnov I, De Ranieri E, Wunderlich J, Trodahl HJ, Rushforth AW, Riester SWE, Campion RP, Edmonds KW, Gallagher BL, Setter N (2012) Magnetic domain wall propagation under ferroelectric control. Phys Rev B 86:235130

    Article  ADS  Google Scholar 

  102. Tokura Y (2006) Critical features of colossal magnetoresistive manganites. Rep Prog Phys 69:797

    Article  ADS  Google Scholar 

  103. Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192:203

    Article  ADS  Google Scholar 

  104. Berkowitz AE, Takano K (1999) Exchange anisotropy – a review. J Magn Magn Mater 200:552

    Article  ADS  Google Scholar 

  105. Laukhin V, Skumryev V, Martí X, Hrabovsky D, Sánchez F, García-Cuenca MV, Ferrater C, Varela M, Lüders U, Bobo JF, Fontcuberta J (2006) Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys Rev Lett 97:227201

    Article  ADS  Google Scholar 

  106. Skumryev V, Laukhin V, Fina I, Martí X, Sánchez F, Gospodinov M, Fontcuberta J (2011) Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys Rev Lett 106:057206

    Article  ADS  Google Scholar 

  107. Chu Y-H, Martin LW, Holcomb MB, Gajek M, Han S-J, He Q, Balke N, Yang C-H, Lee D, Hu W, Zhan Q, Yang P-L, Fraile-Rodríguez A, Scholl A, Wang SX, Ramesh R (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 7:478

    Article  ADS  Google Scholar 

  108. Martin LW, Chu Y-H, Holcomb MB, Huijben M, Yu P, Han S-J, Lee D, Wang SX, Ramesh R (2008) Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett 8:2050

    Article  ADS  Google Scholar 

  109. Béa H, Bibes M, Ott F, Dupé B, Zhu X-H, Petit S, Fusil S, Deranlot C, Bouzehouane K, Barthélémy A (2008) Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys Rev Lett 100:017204

    Article  ADS  Google Scholar 

  110. Lebeugle D, Mougin A, Viret M, Colson D, Ranno L (2009) Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. Phys Rev Lett 103:257601

    Article  ADS  Google Scholar 

  111. Wu SM, Cybart SA, Yu P, Rossell MD, Zhang JX, Ramesh R, Dynes RC (2010) Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater 9:756

    Article  ADS  Google Scholar 

  112. Lebeugle D, Mougin A, Viret M, Colson D, Allibe J, Béa H, Jacquet E, Deranlot C, Bibes M, Barthélémy A (2010) Exchange coupling with the multiferroic compound BiFeO3 in antiferromagnetic multidomain films and single-domain crystals. Phys Rev B 81:134411

    Article  ADS  Google Scholar 

  113. Heron JT, Trassin M, Ashraf K, Gajek M, He Q, Yang SY, Nikonov DE, Chu Y-H, Salahuddin S, Ramesh R (2011) Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys Rev Lett 107:217202

    Article  ADS  Google Scholar 

  114. Allibe J, Fusil S, Bouzehouane K, Daumont C, Sando D, Jacquet E, Deranlot C, Bibes M, Barthélémy A (2012) Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett 12:1141

    Article  ADS  Google Scholar 

  115. Trassin M, Clarkson JD, Bowden SR, Liu J, Heron JT, Paull RJ, Arenholz E, Pierce DT, Unguris J (2013) Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys Rev B 87:134426

    Article  ADS  Google Scholar 

  116. Heron JT, Bosse JL, He Q, Gao Y, Trassin M, Ye L, Clarkson JD, Wang C, Liu J, Salahuddin S et al (2014) Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516:370

    Article  ADS  Google Scholar 

  117. Heron JT, Schlom DG, Ramesh R (2014) Electric field control of magnetism using BiFeO3-based heterostructures. Appl Phys Rev 1:021303

    Article  Google Scholar 

  118. Hochstrat A, Binek C, Chen X, Kleemann W (2004) Extrinsic control of the exchange bias. J Magn Magn Mater 272:325

    Article  ADS  Google Scholar 

  119. Borisov P, Hochstrat A, Chen X, Kleemann W, Binek C (2005) Magnetoelectric switching of exchange bias. Phys Rev Lett 94:117203

    Article  ADS  Google Scholar 

  120. He X, Wang Y, Wu N, Caruso AN, Vescovo E, Belashchenko KD, Dowben PA, Binek C (2010) Robust isothermal electric control of exchange bias at room temperature. Nat Mater 9:579

    Article  ADS  Google Scholar 

  121. Thiele C, Dörr K, Fähler S, Schultz L, Meyer DC, Levin AA, Paufler P (2005) Voltage controlled epitaxial strain in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3(001) films. Appl Phys Lett 87:262502

    Article  ADS  Google Scholar 

  122. Thiele C, Dörr K, Bilani O, Rödel J, Schultz L (2007) Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Phys Rev B 75:054408

    Google Scholar 

  123. Zheng RK, Wang Y, Chan HLW, Choy CL, Luo HS (2007) Determination of the strain dependence of resistance in La0.7Sr0.3MnO3/PMN-PT using the converse piezoelectric effect. Phys Rev B 75:212102

    Google Scholar 

  124. Wang J, Hu FX, Li RW, Sun JR, Shen BG (2010) Strong tensile strain induced charge/orbital ordering in (001)-La7/8Sr1/8MnO3 thin film on 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3. Appl Phys Lett 96:052501

    Article  ADS  Google Scholar 

  125. Kim J-Y, Yao L, van Dijken S (2013) Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch. J Phys Condens Matter 25:082205

    Article  ADS  Google Scholar 

  126. Sheng ZG, Gao J, Sun YP (2009) Coaction of electric field induced strain and polarization effects in La0.7Ca0.3MnO3/PMN-PT structures. Phys Rev B 79:174437

    Google Scholar 

  127. Rata AD, Herklotz A, Nenkov K, Schultz L, Dörr K (2008) Strain-induced insulator state and giant gauge factor of La0.7Sr0.3CoO3 films. Phys Rev Lett 100:076401

    Article  ADS  Google Scholar 

  128. Zheng RK, Jiang Y, Wang Y, Chan HLW, Choy CL, Luo HS (2009) Ferroelectric poling and converse-piezoelectric-effect-induced strain effects in La0.7Ba0.3MnO3 thin films grown on ferroelectric single-crystal substrates. Phys Rev B 79:174420

    Google Scholar 

  129. Biegalski MD, Dörr K, Kim DH, Christen HM (2010) Applying uniform reversible strain to epitaxial oxide films. Appl Phys Lett 96:151905

    Article  ADS  Google Scholar 

  130. Li F, Zhang S, Xu Z, Wei X, Luo J, Shrout TR (2010) Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. J Appl Phys 108:034106

    Article  ADS  Google Scholar 

  131. Yang JJ, Zhao YG, Tian HF, Luo LB, Zhang HY, He YJ, Luo HS (2009) Electric field manipulation of magnetization at room temperature in multiferroic CoFe2O4/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures. Appl Phys Lett 94:212504

    Article  ADS  Google Scholar 

  132. Park JH, Lee J-H, Kim MG, Jeong YK, Oak M-A, Jang HM, Choi HJ, Scott JF (2010) In-plane strain control of the magnetic remanence and cation-charge redistribution in CoFe2O4 thin film grown on a piezoelectric substrate. Phys Rev B 81:134401

    Article  ADS  Google Scholar 

  133. Park JH, Jeong YK, Ryu S, Son JY, Jang HM (2010) Electric-field-control of magnetic remanence of NiFe2O4 thin film epitaxially grown on Pb(Mg1/3Nb2/3)O3-PbTiO3. Appl Phys Lett 96:192504

    Article  ADS  Google Scholar 

  134. Yang Y, Luo ZL, Huang H, Gao Y, Bao J, Li XG, Zhang S, Zhao YG, Chen X, Pan G, Gao C (2011) Electric-field-control of resistance and magnetization switching in multiferroic Zn0.4Fe0.6O4/0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 epitaxial heterostructures. Appl Phys Lett 98:153509

    Article  ADS  Google Scholar 

  135. Wang Z, Wang Y, Ge W, Li J, Viehland D (2013) Volatile and nonvolatile magnetic easy axis rotation in epitaxial ferromagnetic thin films on ferroelectric single crystal substrates. Appl Phys Lett 103:132909

    Article  ADS  Google Scholar 

  136. Kim J-H, Ryu K-S, Jeong J-W, Shin S-C (2010) Large converse magnetoelectric coupling effect at room temperature in CoPd/PMN-PT (001) heterostructure. Appl Phys Lett 97:252508

    Article  ADS  Google Scholar 

  137. Wu T, Bur A, Wong K, Zhao P, Lynch CS, Amiri PK, Wang KL, Carman GP (2011) Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices. Appl Phys Lett 98:262504

    Article  ADS  Google Scholar 

  138. Hsu C-J, Hockel JL, Carman GP (2012) Magnetoelectric manipulation of domain wall configuration in thin film Ni/[Pb(Mn1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (001) heterostructure. Appl Phys Lett 100:092902

    Article  ADS  Google Scholar 

  139. Yang S-W, Peng R-C, Jiang T, Liu Y-K, Feng L, Wang J-J, Chen L-Q, Li X-G, Nan C-W (2014) Non-volatile 180° magnetization reversal by an electric field in multiferroic heterostructures. Adv Mater 26:7091

    Article  Google Scholar 

  140. Brandlmaier A, Geprägs S, Weiler M, Boger A, Opel M, Huebl H, Bihler C, Brandt MS, Botters B, Grundler D, Gross R, Goennenwein STB (2008) In situ manipulation of magnetic anisotropy in magnetite thin films. Phys Rev B 77:104445

    Article  ADS  Google Scholar 

  141. Bihler C, Althammer M, Brandlmaier A, Geprägs S, Weiler M, Opel M, Schoch W, Limmer W, Gross R, Brandt MS, Goennenwein STB (2008) Ga1-xMnxAs/piezoelectric actuator hybrids: a model system for magnetoelastic magnetization manipulation. Phys Rev B 78:045203

    Article  ADS  Google Scholar 

  142. Tiercelin N, Dusch Y, Klimov A, Giordano S, Preobrazhensky V, Pernod P (2011) Room temperature magnetoelectric memory cell using stress-mediated magnetoelastic switching in nanostructured multilayers. Appl Phys Lett 99:192507

    Article  ADS  Google Scholar 

  143. Brandlmaier A, Geprägs S, Woltersdorf G, Gross R, Goennenwein STB (2011) Nonvolatile, reversible electric-field controlled switching of remanent magnetization in multifunctional ferromagnetic/ferroelectric hybrids. J Appl Phys 110:043913

    Article  ADS  Google Scholar 

  144. Parkes DE, Cavill SA, Hindmarch AT, Wadley P, McGee F, Staddon CR, Edmonds KW, Campion RP, Gallagher BL, Rushforth AW (2012) Non-volatile voltage control of magnetization and magnetic domain walls in magnetostrictive epitaxial thin films. Appl Phys Lett 101:072402

    Article  ADS  Google Scholar 

  145. Brandlmaier A, Brasse M, Geprägs S, Weiler M, Gross R, Goennenwein STB (2012) Magneto-optical imaging of elastic strain-controlled magnetization reorientation. Eur Phys J B 85:124

    Article  ADS  Google Scholar 

  146. Cavill SA, Parkes DE, Miguel J, Dhesi SS, Edmonds KW, Campion RP, Rushforth AW (2013) Electrical control of magnetic reversal processes in magnetostrictive structures. Appl Phys Lett 102:032405

    Article  ADS  Google Scholar 

  147. Xi L, Guo X, Wang Z, Li Y, Yao Y, Zuo Y, Xue D (2013) Voltage-driven in-plane magnetization easy axis switching in FeNi/piezoelectric actuator hybrid structure. Appl Phys Express 6:015804

    Article  ADS  Google Scholar 

  148. Pertsev NA (2008) Giant magnetoelectric effect via strain-induced spin reorientation transitions in ferromagnetic films. Phys Rev B 78:212102

    Article  ADS  Google Scholar 

  149. Hu J-M, Nan CW (2009) Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures. Phys Rev B 80:224416

    Article  ADS  Google Scholar 

  150. Pertsev NA, Kohlstedt H (2010) Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates. Nanotechnology 21:475202

    Article  ADS  Google Scholar 

  151. Hu J-M, Li Z, Wang J, Nan CW (2010) Electric-field control of strain-mediated magnetoelectric random access memory. J Appl Phys 107:093912

    Article  ADS  Google Scholar 

  152. Liu M, Lou J, Li S, Sun NX (2011) E-field control of exchange bias and deterministic magnetization switching in AFM/FM/FE multiferroic heterostructures. Adv Funct Mater 21:2593

    Article  Google Scholar 

  153. Ghidini M, Pellicelli R, Prieto JL, Moya X, Soussi J, Briscoe J, Dunn S, Mathur ND (2013) Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nat Commun 4:1453

    Article  ADS  Google Scholar 

  154. Liu M, Zhou Z, Nan T, Howe BM, Brown GJ, Sun NX (2013) Voltage tuning of ferromagnetic resonance with bistable magnetization switching in energy-efficient magnetoelectric composites. Adv Mater 25:1435

    Article  Google Scholar 

  155. Chung T-K, Carman GP, Mohanchandra KP (2008) Reversible magnetic domain-wall motion under an electric field in a magnetoelectric thin film. Appl Phys Lett 92:112509

    Article  ADS  Google Scholar 

  156. Dean J, Bryan MT, Schrefl T, Allwood DA (2011) Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems. J Appl Phys 109:023915

    Article  ADS  Google Scholar 

  157. Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J-V, Zhao W, Trypiniotis T, Cowburn RP, Chappert C, Ravelosona D, Lecoeur P (2013) Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat Commun 4:1378

    Article  ADS  Google Scholar 

  158. de Ranieri E, Roy PE, Fang D, Vehsthedt EK, Irvine AC, Heiss D, Casiraghi A, Campion RP, Gallagher BL, Jungwirth T, Wunderlich J (2013) Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nat Mater 12:808

    Article  ADS  Google Scholar 

  159. Lemerle S, Ferré J, Chappert C, Mathet V, Giamarchi T, Le Doussal P (1998) Domain wall creep in an Ising ultrathin magnetic film. Phys Rev Lett 80:849

    Article  ADS  Google Scholar 

  160. Glazer AM, Mabud SA (1978) Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3. Acta Crystallogr B 34:1065

    Article  Google Scholar 

  161. Kwei GH, Lawson AC, Billinge SJL, Cheong SW (1993) Structures of the ferroelectric phases of barium titanate. J Phys Chem 97:2368

    Article  Google Scholar 

  162. Kay HF, Vousden P (1949) Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Philos Mag 40:1019

    Article  Google Scholar 

  163. Lee MK, Nath TK, Eom CB, Smoak MC, Tsui F (2000) Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl Phys Lett 77:3547

    Article  ADS  Google Scholar 

  164. Eerenstein W, Wiora M, Prieto JL, Scott JF, Mathur ND (2007) Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat Mater 6:348

    Article  ADS  Google Scholar 

  165. Alberca A, Munuera C, Tornos J, Mompean FJ, Biskup N, Ruiz A, Nemes NM, de Andres A, León C, Santamaría J, García-Hernández M (2012) Ferroelectric substrate effects on the magnetism, magnetotransport, and electroresistance of La0.7Ca0.3MnO3 thin films on BaTiO3. Phys Rev B 86:144416

    Google Scholar 

  166. Tian HF, Qu TL, Luo LB, Yang JJ, Guo SM, Zhang HY, Zhao YG, Li JQ (2008) Strain induced magnetoelectric coupling between magnetite and BaTiO3. Appl Phys Lett 92:063507

    Article  ADS  Google Scholar 

  167. Vaz CAF, Hoffman J, Posadas A-B, Ahn CH (2009) Magnetic anisotropy modulation of magnetite in Fe3O4/BaTiO3(100) epitaxial structures. Appl Phys Lett 94:022504

    Article  ADS  Google Scholar 

  168. Sterbinsky GE, Wessels BW, Kim J-W, Karapetrova E, Ryan PJ, Keavney DJ (2010) Strain-driven spin reorientation in magnetite/barium titanate heterostructures. Appl Phys Lett 96:092510

    Article  ADS  Google Scholar 

  169. Sahoo S, Polisetty S, Duan C-G, Jaswal SS, Tsymbal EY, Binek C (2007) Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys Rev B 76:092108

    Article  ADS  Google Scholar 

  170. Taniyama T, Akasaka K, Fu D, Itoh M (2009) Artificially controlled magnetic domain structures in ferromagnetic dots/ferroelectric heterostructures. J Appl Phys 105:070000

    Article  Google Scholar 

  171. Brivio S, Petti D, Bertacco R, Cezar JC (2011) Electric field control of magnetic anisotropies and magnetic coercivity in Fe/BaTiO3(001) heterostructures. Appl Phys Lett 98:092505

    Article  ADS  Google Scholar 

  172. Shirahata Y, Nozaki T, Venkataiah G, Taniguchi H, Itoh M, Taniyama T (2011) Switching of the symmetry of magnetic anisotropy in Fe/BaTiO3 heterostructures. Appl Phys Lett 99:022501

    Article  ADS  Google Scholar 

  173. Venkataiah G, Shirahata Y, Itoh M, Taniyama T (2011) Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3 heterostructure by electric field. Appl Phys Lett 99:102506

    Article  ADS  Google Scholar 

  174. Venkataiah G, Shirahata Y, Suzuki I, Itoh M, Taniyama T (2012) Strain-induced reversible and irreversible magnetization switching in Fe/BaTiO3 heterostructures. J Appl Phys 111:033921

    Article  ADS  Google Scholar 

  175. Czeschka FD, Geprägs S, Opel M, Goennenwein STB, Gross R (2009) Giant magnetic anisotropy changes in Sr2CrReO6 thin films on BaTiO3. Appl Phys Lett 95:062508

    Article  ADS  Google Scholar 

  176. Pan M, Hong S, Guest JR, Liu Y, Petford-Long A (2013) Visualization of magnetic domain structure changes induced by interfacial strain in CoFe2O4/BaTiO3 heterostructures. J Phys D Appl Phys 46:055001

    Article  ADS  Google Scholar 

  177. Moubah R, Magnus F, Hjörvarsson B, Andersson G (2014) Strain enhanced magnetic anisotropy in SmCo/BaTiO3 multiferroic heterostructures. J Appl Phys 115:053905

    Article  ADS  Google Scholar 

  178. Polisetty S, Echtenkamp W, Jones K, He X, Sahoo S, Binek C (2010) Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure. Phys Rev B 82:134419

    Article  ADS  Google Scholar 

  179. Lahtinen THE, van Dijken S (2013) Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3. Appl Phys Lett 102:112406

    Article  ADS  Google Scholar 

  180. Taniyama T, Akasaka K, Fu D, Itoh M, Takashima H, Prijamboedi B (2007) Electrical voltage manipulation of ferromagnetic microdomain structures in a ferromagnetic/ferroelectric hybrid structure. J Appl Phys 101:09F512

    Google Scholar 

  181. Geprägs S, Brandlmaier A, Opel M, Gross R, Goennenwein STB (2010) Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl Phys Lett 96:142509

    Article  ADS  Google Scholar 

  182. Lahtinen THE, Tuomi JO, van Dijken S (2011) Pattern transfer and electric-field-induced magnetic domain formation in multiferroic heterostructures. Adv Mater 23:3187

    Article  Google Scholar 

  183. Lahtinen THE, Tuomi JO, van Dijken S (2011) Electrical writing of magnetic domain patterns in ferromagnetic/ferroelectric heterostructures. IEEE Trans Magn 47:3768

    Article  ADS  Google Scholar 

  184. Lahtinen THE, Franke KJA, van Dijken S (2012) Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci Rep 2:258

    Article  ADS  Google Scholar 

  185. Geprägs S, Mannix D, Opel M, Goennenwein STB, Gross R (2013) Converse magnetoelectric effects in Fe3O4/BaTiO3 multiferroic hybrids. Phys Rev B 88:054412

    Article  ADS  Google Scholar 

  186. Brintlinger T, Lim S-H, Baloch KH, Alexander P, Qi Y, Barry J, Melngailis J, Salamanca-Riba L, Takeuchi I, Cumings J (2010) In situ observation of reversible nanomagnetic switching induced by electric fields. Nano Lett 10:1219

    Article  ADS  Google Scholar 

  187. Cherifi RO, Ivanovskaya V, Phillips LC, Zobelli A, Infante IC, Jacquet E, Garcia V, Fusil S, Briddon PR, Guiblin N et al (2014) Electric-field control of magnetic order above room temperature. Nat Mater 13:345

    Article  ADS  Google Scholar 

  188. Zhang S, Zhao YG, Li PS, Yang JJ, Rizwan S, Zhang JX, Seidel J, Qu TL, Yang YJ, Luo ZL, He Q, Zou T, Chen QP, Wang JW, Yang LF, Sun Y, Wu YZ, Xiao X, Jin XF, Huang J, Gao C, Han XF, Ramesh R (2012) Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys Rev Lett 108:137203

    Article  ADS  Google Scholar 

  189. Liu M, Hoffman J, Wang J, Zhang J, Nelson-Cheeseman B, Bhattacharya A (2013) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Sci Rep 3:1876

    ADS  Google Scholar 

  190. Wang Z, Zhang Y, Viswan R, Li Y, Luo H, Li J, Viehland D (2014) Electrical and thermal control of magnetic coercive field in ferromagnetic/ferroelectric heterostructures. Phys Rev B 89:035118

    Article  ADS  Google Scholar 

  191. Wang Z, Zhang Y, Wang Y, Li Y, Luo H, Li J, Viehland D (2014) Magnetoelectric assisted 180° magnetization switching for electric field addressable writing in magnetoresistive random-access memory. ACS Nano 8:7793

    Article  Google Scholar 

  192. You L, Wang B, Zou X, Lim ZS, Zhou Y, Ding H, Chen L, Wang J (2013) Origin of the uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 on stripe-domain BiFeO3. Phys Rev B 88:184426

    Google Scholar 

  193. Unguris J, Bowden SR, Pierce DT, Trassin M, Ramesh R, Cheong S-W, Fackler S, Takeuchi I (2014) Simultaneous imaging of the ferromagnetic and ferroelectric structure in multiferroic heterostructures. APL Mater 2:076109

    Article  ADS  Google Scholar 

  194. Lahtinen THE, Shirahata Y, Yao L, Franke KJA, Venkataiah G, Taniyama T, van Dijken S (2012) Alternating domains with uniaxial and biaxial magnetic anisotropy in epitaxial Fe films on BaTiO3. Appl Phys Lett 101:262405

    Article  ADS  Google Scholar 

  195. Chopdekar RV, Malik VK, Fraile Rodríguez A, Le Guyader L, Takamura Y, Scholl A, Stender D, Schneider CW, Bernhard C, Nolting F, Heyderman LJ (2012) Spatially resolved strain-imprinted magnetic states in an artificial multiferroic. Phys Rev B 86:014408

    Article  ADS  Google Scholar 

  196. Streubel R, Köhler D, Schäfer R, Eng LM (2013) Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructures. Phys Rev B 87:054410

    Article  ADS  Google Scholar 

  197. Chopdekar RV, Heidler J, Piamonteze C, Takamura Y, Scholl A, Rusponi S, Brune H, Heyderman LJ, Nolting F (2013) Strain-dependent magnetic configurations in manganite-titanate heterostructures probed with soft X-ray techniques. Eur Phys J B 86:241

    Article  ADS  Google Scholar 

  198. Brandl F, Franke KJA, Lahtinen THE, van Dijken S, Grundler D (2014) Spin waves in CoFeB on ferroelectric domains combining spin mechanics and magnonics. Solid State Commun 198:13

    Article  ADS  Google Scholar 

  199. Fackler SW, Donahue MJ, Gao T, Nero PNA, Cheong S-W, Cumings J, Takeuchi I (2014) Local control of magnetic anisotropy in transcritical permalloy thin films using ferroelectric BaTiO3 domains. Appl Phys Lett 105:212905

    Article  ADS  Google Scholar 

  200. Franke KJA, Lahtinen THE, van Dijken S (2012) Field tuning of ferromagnetic domain walls on elastically coupled ferroelectric domain boundaries. Phys Rev B 85:094423

    Article  ADS  Google Scholar 

  201. Franke KJA, López González D, Hämäläinen SJ, van Dijken S (2014) Size dependence of domain pattern transfer in multiferroic heterostructures. Phys Rev Lett 112:017201

    Article  ADS  Google Scholar 

  202. O’Handley RC (2000) Modern magnetic materials: principles and applications. Wiley, New York

    Google Scholar 

  203. Hubert A (1979) Charged walls in thin magnetic films. IEEE Trans Magn 15:1251

    Article  ADS  Google Scholar 

  204. Franke KJA, Van de Wiele B, Shirahata Y, Hämäläinen SJ, Taniyama T, van Dijken S (2015) Reversible electric-field driven magnetic domain-wall motion. Phys Rev X 5:011010

    Google Scholar 

  205. Van de Wiele B, Laurson L, Franke KJA, van Dijken S (2014) Electric field driven magnetic domain wall motion in ferromagnetic-ferroelectric heterostructures. Appl Phys Lett 104:012401

    Article  ADS  Google Scholar 

  206. Tsymbal EY, Kohlstedt H (2006) Tunneling across a ferroelectric. Science 313:181

    Article  Google Scholar 

  207. Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur ND, Barthélémy A, Bibes M (2009) Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460:81

    Article  ADS  Google Scholar 

  208. Maksymovych P, Jesse S, Yu P, Ramesh R, Baddorf AP, Kalinin SV (2009) Polarization control of electron tunneling into ferroelectric surfaces. Science 324:1421

    Article  ADS  Google Scholar 

  209. Gruverman A, Wu D, Lu H, Wang Y, Jang HW, Folkman CM, Zhuravlev MY, Felker D, Rzchowski M, Eom C-B, Tsymbal EY (2009) Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett 9:3539

    Article  ADS  Google Scholar 

  210. Crassous A, Garcia V, Bouzehouane K, Fusil S, Vlooswijk AHG, Rispens G, Noheda B, Bibes M, Barthélémy A (2010) Giant tunnel electroresistance with PbTiO3 ferroelectric tunnel barriers. Appl Phys Lett 96:042901

    Article  ADS  Google Scholar 

  211. Gao XS, Liu JM, Au K, Dai JY (2012) Nanoscale ferroelectric tunnel junctions based on ultrathin BaTiO3 film and Ag nanoelectrodes. Appl Phys Lett 101:142905

    Article  ADS  Google Scholar 

  212. Pantel D, Goetze S, Hesse D, Alexe M (2011) Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films. ACS Nano 5:6032

    Article  Google Scholar 

  213. Kim DJ, Lu H, Ryu S, Bark C-W, Eom C-B, Tsymbal EY, Gruverman A (2012) Ferroelectric tunnel memristor. Nano Lett 12:5697

    Article  ADS  Google Scholar 

  214. Chanthbouala A, Crassous A, Garcia V, Bouzehouane K, Fusil S, Moya X, Allibe J, Dlubak B, Grollier J, Xavier S, Deranlot C, Moshar A, Proksch R, Mathur ND, Bibes M, Barthélémy A (2012) Solid-state memories based on ferroelectric tunnel junctions. Nat Nanotechnol 7:101

    Article  ADS  Google Scholar 

  215. Chanthbouala A, Garcia V, Cherifi RO, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur ND, Bibes M, Barthélémy A, Grollier J (2012) A ferroelectric memristor. Nat Mater 11:860

    Article  ADS  Google Scholar 

  216. Pantel D, Lu H, Goetze S, Werner P, Jik Kim D, Gruverman A, Hesse D, Alexe M (2012) Tunnel electroresistance in junctions with ultrathin ferroelectric Pb(Zr0.2Ti0.8)O3 barriers. Appl Phys Lett 100:232902

    Article  ADS  Google Scholar 

  217. Kim DJ, Lu H, Ryu S, Lee S, Bark CW, Eom CB, Gruverman A (2013) Retention of resistance states in ferroelectric tunnel memristors. Appl Phys Lett 103:142908

    Article  ADS  Google Scholar 

  218. Soni R, Petraru A, Meuffels P, Vavra O, Ziegler M, Kim SK, Jeong DS, Pertsev NA, Kohlstedt H (2014) Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions. Nat Commun 5:5414

    Article  ADS  Google Scholar 

  219. Garcia V, Bibes M (2014) Ferroelectric tunnel junctions for information storage and processing. Nat Commun 5:4289

    Article  ADS  Google Scholar 

  220. Béa H, Bibes M, Cherifi S, Nolting F, Warot-Fonrose B, Fusil S, Herranz G, Deranlot C, Jacquet E, Bouzehouane K, Barthélémy A (2006) Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl Phys Lett 89:242114

    Article  ADS  Google Scholar 

  221. Hambe M, Petraru A, Pertsev NA, Munroe P, Nagarajan V, Kohlstedt H (2010) Crossing an interface: ferroelectric control of tunnel currents in magnetic complex oxide heterostructures. Adv Funct Mater 20:2436

    Article  Google Scholar 

  222. Yamada H, Garcia V, Fusil S, Boyn S, Marinova M, Gloter A, Xavier S, Grollier J, Jacquet E, Carrtro C, Deranlot C, Bibes M, Barthélémy A (2013) Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions. ACS Nano 7:5385

    Article  Google Scholar 

  223. Liu YK, Yin YW, Dong SN, Yang SW, Jiang T, Li XG (2014) Coexistence of four resistance states and exchange bias in La0.6Sr0.4MnO3/BiFeO3/La0.6Sr0.4MnO3 multiferroic tunnel junction. Appl Phys Lett 104:043507

    Article  ADS  Google Scholar 

  224. Boyn S, Girod S, Garcia V, Fusil S, Xavier S, Deranlot C, Yamada H, Carrétéro C, Jacquet E, Bibes M, Barthélémy A, Grollier J (2014) High-performance ferroelectric memory based on fully patterned tunnel junctions. Appl Phys Lett 104:052909

    Article  ADS  Google Scholar 

  225. Zhuravlev MY, Sabirianov RF, Jaswal SS, Tsymbal EY (2005) Giant electroresistance in ferroelectric tunnel junctions. Phys Rev Lett 94:246802

    Article  ADS  Google Scholar 

  226. Kohlstedt H, Pertsev NA, Rodríguez Contreras J, Waser R (2005) Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys Rev B 72:125341

    Article  ADS  Google Scholar 

  227. Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett 93:082508

    Article  ADS  Google Scholar 

  228. Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi RO, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur ND, Gaupp A, Abrudan R, Radu F, Barthélémy A, Bibes M (2011) Interface-induced room-temperature multiferroicity in BaTiO3. Nat Mater 10:753

    Article  ADS  Google Scholar 

  229. Wen Z, Li C, Wu D, Li A, Ming N (2013) Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater 12:617

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author thanks Kévin Franke and Tuomas Lahtinen for their contribution to the figures and John Burton, Evgeny Tsymbal, Chang-Beom Eom, Marin Alexe, Vincent Garcia, and Manuel Bibes for providing data. Financial support from the European Research Council (ERC-2012-StG 307502-E-CONTROL) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiaan van Dijken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

van Dijken, S. (2016). Hybrid Ferromagnetic/Ferroelectric Materials. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_18

Download citation

Publish with us

Policies and ethics