Heusler Compounds: Applications in Spintronics

  • Tanja GrafEmail author
  • Claudia Felser
  • Stuart S. P. Parkin
Reference work entry


The history of one of the most exciting material classes can be traced back to the year 1903 when Fritz Heusler discovered that an alloy with the composition Cu2MnAl behaves like a ferromagnet, although none of its constituent elements is magnetic by itself. This class of Heusler compounds offer a degree of flexibility which is lacking in binary and pseudobinary ferromagnetic alloys and such flexibility is absolutely necessary to tackle all the needs of optimized devices. Despite all these interesting properties of Heusler compounds, this chapter will focus on magnetic materials and their applications in the field of spintronics.


Spin Polarization Total Magnetic Moment Heusler Alloy Perpendicular Magnetic Anisotropy Local Spin Density Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank B. Balke, A. Beleanu, C. G. F. Blum, F. Casper, S. Chadov, G. H. Fecher, T. Gruhn, V. Jung, J. Kübler, V. Ksenofontov, S. Ouardi, T. D. Schladt, M. Schwall, J. Winterlik, and S. Wurmehl for providing data and for many fruitful discussions. Financial support by the Deutsche Forschungsgemeinschaft (Project TP 2.3-A in research unit FOR 1464 “ASPIMATT”) is gratefully acknowledged.


  1. 1.
    Heusler F, Starck W, Haupt E (1903) Verh Dtsch Phys Ges 5:220Google Scholar
  2. 2.
    Heusler F (1903) Verh Dtsch Phys Ges 5:219Google Scholar
  3. 3.
    Heusler O (1934) Ann Phys 19:155CrossRefGoogle Scholar
  4. 4.
    Bradley AJ, Rodgers JW (1934) Proc R Soc A 144:340ADSCrossRefGoogle Scholar
  5. 5.
    Webster PJ (1971) J Phys Chem Solids 32:1221ADSCrossRefGoogle Scholar
  6. 6.
    Brooks JS, Williams JM (1975) Phys Status Solidi (a) 32:413ADSCrossRefGoogle Scholar
  7. 7.
    de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) Phys Rev Lett 50:2024ADSCrossRefGoogle Scholar
  8. 8.
    Kübler J, Williams AR, Sommers CB (1983) Phys Rev B 28:1745ADSCrossRefGoogle Scholar
  9. 9.
    Felser C, Fecher GH, Balke B (2007) Angew Chem Int Ed 46:668CrossRefGoogle Scholar
  10. 10.
    Gruhn T (2010) Phys Rev B 82:125210ADSCrossRefGoogle Scholar
  11. 11.
    Winterlik J, Fecher GH, Thomas A, Felser C (2009) Phys Rev B 79:064508ADSCrossRefGoogle Scholar
  12. 12.
    Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin H-J (2006) Appl Phys Lett 88:032503ADSCrossRefGoogle Scholar
  13. 13.
    Barth J, Fecher GH, Balke B, Ouardi S, Graf T, Felser C, Shkabko A, Weidenkaff A, Klaer P, Elmers H-J, Yoshikawa H, Ueda S, Kobayashi K (2010) Phys Rev B 81:064404ADSCrossRefGoogle Scholar
  14. 14.
    Balke B, Fecher GH, Winterlik J, Felser C (2007) Appl Phys Lett 90:152504ADSCrossRefGoogle Scholar
  15. 15.
    Winterlik J, Balke B, Fecher GH, Felser C (2008) Phys Rev B 77:054406ADSCrossRefGoogle Scholar
  16. 16.
    Chadov S, Qi X, Kübler J, Fecher GH, Felser C, Zhang SC (2010) Nat Mater 9:541ADSCrossRefGoogle Scholar
  17. 17.
    Lin H, Wray A, Xia Y, Xu S, Jia S, Cava RJ, Bansil A, Hasan MZ (2010) Nat Mater 9:546ADSCrossRefGoogle Scholar
  18. 18.
    Graf T, Parkin SSP, Felser C (2011) IEEE Trans Magn 47:367CrossRefGoogle Scholar
  19. 19.
    Graf T, Felser C, Parkin SSP (2011) Sol State Chem 39:1CrossRefGoogle Scholar
  20. 20.
    Casper F, Felser C, Allgem Z (2008) Anorg Chem 634:2418CrossRefGoogle Scholar
  21. 21.
    Gofryk K, Kaczorowski D, Plackowski T, Leithe-Jasper A, Grin Y (2005) Phys Rev B 72:094409ADSCrossRefGoogle Scholar
  22. 22.
    Hartjes K, Jeitschko W (1995) J Alloys Compd 226:81CrossRefGoogle Scholar
  23. 23.
    Heyne L, Igarashi T, Kanomata T, Neumann K-U, Ouladdiaf B, Ziebeck KRA (2005) J Phys Condens Matter 17:4991ADSCrossRefGoogle Scholar
  24. 24.
    Kübler J (1984) Physica B 127:257Google Scholar
  25. 25.
    Casper F, Ksenofontov V, Kandpal HC, Reiman S, Shishido T, Takahashi M, Takeda M, Felser C, Allgem Z (2006) Anorg Chem 632:1273CrossRefGoogle Scholar
  26. 26.
    Wu F, Mizukami S, Watanabe D, Naganuma H, Oogane M, Ando Y, Miyazaki T (2009) Appl Phys Lett 94:122503ADSCrossRefGoogle Scholar
  27. 27.
    Wu F, Mizukami S, Watanabe D, Sajitha EP, Naganuma H, Oogane M, Ando Y, Miyazaki T (2010) IEEE Trans Magn 46:1863ADSCrossRefGoogle Scholar
  28. 28.
    Slater JC (1936) Phys Rev 49:537ADSCrossRefGoogle Scholar
  29. 29.
    Pauling L (1938) Phys Rev 54:899ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    Kübler J (2000) Theory of itinerant electron magnetism. Clarendon, OxfordGoogle Scholar
  31. 31.
    Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin H-J, Morais J (2005) Phys Rev B 72:184434ADSCrossRefGoogle Scholar
  32. 32.
    de Groot RA, van der Kraan AM, Buschow KHJ (1986) J Magn Magn Mater 61:330ADSCrossRefGoogle Scholar
  33. 33.
    de Groot RA (1991) Physica B 172:45ADSCrossRefGoogle Scholar
  34. 34.
    Weht R, Pickett WE (1999) Phys Rev B 60:13006ADSCrossRefGoogle Scholar
  35. 35.
    Galanakis I, Dederichs P (2005) Half-metallic alloys, vol 676, Lecture notes in physics. Springer, BerlinCrossRefGoogle Scholar
  36. 36.
    Kübler J, Fecher GH, Felser C (2007) Phys Rev B 76:024414ADSCrossRefGoogle Scholar
  37. 37.
    Fecher GH, Kandpal HC, Wurmehl S, Felser C, Schönhense G (2006) J Appl Phys 99:08J106CrossRefGoogle Scholar
  38. 38.
    Wurmehl S, Fecher GH, Ksenofontov V, Casper F, Stumm U, Felser C, Lin H-J, Hwu Y (2006) J Appl Phys 99:08J103CrossRefGoogle Scholar
  39. 39.
    Balke B, Ouardi S, Graf T, Barth J, Blum CGF, Fecher GH, Shkabko A, Weidenkaff A, Felser C (2010) Solid State Commun 150:529ADSCrossRefGoogle Scholar
  40. 40.
    van Engen PG, Bushow KHJ, Jongebreuer R, Erman M (1983) Appl Phys Lett 42:202ADSCrossRefGoogle Scholar
  41. 41.
    Helmholdt RB, de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1984) J Magn Magn Mater 43:249ADSCrossRefGoogle Scholar
  42. 42.
    Kulatov E, Mazin II (1990) J Phys Condens Matter 2:343ADSCrossRefGoogle Scholar
  43. 43.
    Youn SJ, Min BI (1995) Phys Rev B 51:10436ADSCrossRefGoogle Scholar
  44. 44.
    Wang X, Antropov VP, Harmon BN (1994) IEEE Trans Magn 30:4458ADSCrossRefGoogle Scholar
  45. 45.
    Galanakis I, Ostanin S, Alouani M, Dreysse H, Wills JM (2000) Phys Rev B 61:4093ADSCrossRefGoogle Scholar
  46. 46.
    Galanakis I, Dederichs PH, Papanikolaou N (2002) Phys Rev B 66:134428ADSCrossRefGoogle Scholar
  47. 47.
    Kandpal HC, Felser C, Seshadri R (2005) J Phys D Appl Phys 38:1CrossRefGoogle Scholar
  48. 48.
    Hanssen KEM, Mijnarends PE (1986) Phys Rev B 34:5009ADSCrossRefGoogle Scholar
  49. 49.
    Hanssen KEM, Mijnarends PE, Rabou LPLM, Buschow KHJ (1990) Phys Rev B 42:1533ADSCrossRefGoogle Scholar
  50. 50.
    Kirillova MN, Makhnev AA, Shreder EI, Dyakina VP, Gorina NB (1995) Phys Status Solidi B 187:231ADSCrossRefGoogle Scholar
  51. 51.
    Bona GL, Meier F, Taborelli M, Bucher E, Schmidt PH (1985) Solid State Commun 56:391ADSCrossRefGoogle Scholar
  52. 52.
    Soulen RJ, Osofsky MS, Nadgorny B, Broussard PR, Cheng SF, Byers JM, Tanaka CT, Nowack J, Moodera JS, Laprade G, Barry A, Coey MD (1999) J Appl Phys 85:4589ADSCrossRefGoogle Scholar
  53. 53.
    Ristoiu D, Nozieres JP, Borca CN, Borca B, Dowben PA (2000) Appl Phys Lett 76:2349ADSCrossRefGoogle Scholar
  54. 54.
    Ristoiu D, Nozieres JP, Borca CN, Komesu H-k, Jeong T, Dowben PA (2000) Europhys Lett 49:624ADSCrossRefGoogle Scholar
  55. 55.
    de Wijs GA, de Groot RA (2001) Phys Rev B 64:020402CrossRefGoogle Scholar
  56. 56.
    Galanakis I (2002) J Phys Condens Matter 14:6329ADSCrossRefGoogle Scholar
  57. 57.
    Otto MJ, van Woerden RAM, van der Valk PJ, Wijngaard J, van Bruggen CF, Haas C (1989) J Phys Condens Matter 1:2351ADSCrossRefGoogle Scholar
  58. 58.
    Borca CN, Komesu T, Jeong H-K, Dowben PA, Ristoiu D, Hordequin C, Nozieres JP, Pierre J, Stadler S, Idzerda YU (2001) Phys Rev B 64:052409ADSCrossRefGoogle Scholar
  59. 59.
    Hordequin C, Ristoiu D, Ranno L, Pierre J (2000) Eur Phys J B 16:287ADSCrossRefGoogle Scholar
  60. 60.
    Hordequin C, Lelivre-Bernab E, Pierre J (1997) Physica B 234–236:602CrossRefGoogle Scholar
  61. 61.
    Hordequin C, Pierre J, Currat R (1997) Physica B 234–236:605CrossRefGoogle Scholar
  62. 62.
    Lezaic M, Mavropoulos P, Enkovaara J, Bihlmayer G, Blügel S (2006) Phys Rev Lett 97:026404ADSCrossRefGoogle Scholar
  63. 63.
    Wijngaard JH, Haas C, de Groot RA (1989) Phys Rev B 40:9319ADSCrossRefGoogle Scholar
  64. 64.
    Kulatov E, Uspenkii Y, Halilov S (1995) J Magn Magn Mater 145:395ADSCrossRefGoogle Scholar
  65. 65.
    Kisker E, Carbone C, Flipse CF, Wassermann EF (1987) J Magn Magn Mater 70:21ADSCrossRefGoogle Scholar
  66. 66.
    Ksenofontov V, Kroth K, Reiman S, Casper F, Jung V, Takahashi M, Takeda M, Felser C (2006) Hyperfine Interact 168:1201ADSCrossRefGoogle Scholar
  67. 67.
    Offernes L, Ravindran P, Kjekshus A (2003) Appl Phys Lett 82:2862ADSCrossRefGoogle Scholar
  68. 68.
    Casper F, Seshari R, Felser C (2009) Phys Status Solidi A 206:1090ADSCrossRefGoogle Scholar
  69. 69.
    Ksenofontov V, Melnyk G, Wojcik M, Wurmehl S, Kroth K, Reiman S, Blaha P, Felser A (2006) Phys Rev B 74:134426ADSCrossRefGoogle Scholar
  70. 70.
    Balke B, Fecher GH, Gloskovskii A, Barth J, Kroth K, Felser C, Robert R, Weidenkaff A (2008) Phys Rev B 77:045209ADSCrossRefGoogle Scholar
  71. 71.
    Fujii S, Sugimura S, Ishida S, Asano S (1990) J Phys Condens Matter 2:8583ADSCrossRefGoogle Scholar
  72. 72.
    Block T, Felser C, Jakob G, Ensling J, Mühling B, Gütlich P, Beaumont V, Studer F, Cava RJ (2003) J Solid State Chem 176:646ADSCrossRefGoogle Scholar
  73. 73.
    Kandpal HC, Fecher GH, Felser C (2007) J Phys D Appl Phys 40:1507ADSCrossRefGoogle Scholar
  74. 74.
    Picozzi S, Continenza A, Freeman AJ (2004) Phys Rev B 69:094423ADSCrossRefGoogle Scholar
  75. 75.
    Kurtulus Y, Dronskowski R, Samolyuk GD, Antropov VP (2005) Phys Rev B 71:014425ADSCrossRefGoogle Scholar
  76. 76.
    Kurtulus Y, Gilleen M, Dronskowski R (2005) J Comput Chem 27:90CrossRefGoogle Scholar
  77. 77.
    Butler WH, Mewes CKA, Liu C, Xu T (2011) arXiv:1103.3855v1Google Scholar
  78. 78.
    Felser C, Ahn K, Kremer RK, Seshadri R, Simon AJ (1999) J Solid State Chem 147:19ADSCrossRefGoogle Scholar
  79. 79.
    Felser C, Seshadri R (2000) Int J Inorg Mater 6:677CrossRefGoogle Scholar
  80. 80.
    Balke B, Fecher GH, Kandpal HC, Felser C, Kobayashi K, Ikenaga E, Kim J-J, Ueda S (2006) Phys Rev B 74:104405ADSCrossRefGoogle Scholar
  81. 81.
    Fecher GH, Kandpal HC, Wurmehl S, Morais J, Lin H-J, Elmers H-J, Schönhense G, Felser C (2005) J Phys Condens Matter 17:7237ADSCrossRefGoogle Scholar
  82. 82.
    Miura Y, Nagao K, Shirai M (2004) Phys Rev B 69:144413ADSCrossRefGoogle Scholar
  83. 83.
    Wurmehl S, Fecher GH, Kroth K, Kronast F, Dürr HA, Takeda Y, Saitoh Y, Kobayashi K, Lin H-J, Schönhense G, Felser C (2006) J Phys D Appl Phys 39:803ADSCrossRefGoogle Scholar
  84. 84.
    Zhang M, Liu Z, Hu H, Liu G, Cui Y, Chen J, Wu G, Zhang X, Xiao G (2004) J Magn Magn Mater 277:30CrossRefGoogle Scholar
  85. 85.
    Kobayashi K, Umetsu RY, Kainuma R, Ishida K, Oyamada T, Fujita A, Fukamichi K (2004) Appl Phys Lett 85:4684ADSCrossRefGoogle Scholar
  86. 86.
    Clifford E, Venkatesan M, Gunning R, Coey JMD (2004) Solid State Commun 131:61ADSCrossRefGoogle Scholar
  87. 87.
    Galanakis I (2004) J Phys Condens Matter 16:8007ADSCrossRefGoogle Scholar
  88. 88.
    Buschow KHJ, van Engen P (1981) J Magn Magn Mater 25:90ADSCrossRefGoogle Scholar
  89. 89.
    Elmers H-J, Fecher GH, Valdaitsev D, Nepijko SA, Gloskovskii A, Jakob G, Schönhense G, Wurmehl S, Block T, Felser C, Hsu P-C, Tsai W-L, Cramm S (2003) Phys Rev B 67:104412ADSCrossRefGoogle Scholar
  90. 90.
    Webster PJ, Ziebeck KRA (1973) J Phys Chem Solids 34:1647ADSCrossRefGoogle Scholar
  91. 91.
    Ishida S, Akazawa S, Kubo Y, Ishida J (1982) J Phys F Met Phys 12:1111ADSCrossRefGoogle Scholar
  92. 92.
    Hedin L, Lundqvist BI (1971) J Phys C Solid State Phys 4:2064ADSCrossRefGoogle Scholar
  93. 93.
    Kohn W, Sham LJ (1965) Phys Rev 140:1133MathSciNetADSCrossRefGoogle Scholar
  94. 94.
    von Barth U, Hedin L (1972) J Phys C Solid State Phys 5:1629ADSCrossRefGoogle Scholar
  95. 95.
    Ishida S, Fujii S, Kashiwagi S, Asano S (1995) J Phys Soc Jpn 64:2152ADSCrossRefGoogle Scholar
  96. 96.
    Ishida S, Kashiwagi S, Fujii S, Asano S (1995) Physica B 210:140ADSCrossRefGoogle Scholar
  97. 97.
    Mohn P, Blaha P, Schwarz K (1995) J Magn Magn Mater 140–144:183CrossRefGoogle Scholar
  98. 98.
    Picozzi S, Continenza A, Freeman AJ (2002) Phys Rev B 66:094421ADSCrossRefGoogle Scholar
  99. 99.
    Perdew JP, Yue W (1986) Phys Rev B 33:8800ADSCrossRefGoogle Scholar
  100. 100.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865ADSCrossRefGoogle Scholar
  101. 101.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais A (1992) Phys Rev B 46:6671ADSCrossRefGoogle Scholar
  102. 102.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396ADSCrossRefGoogle Scholar
  103. 103.
    Antonov VN, Dürr HA, Kucherenko Y, Bekenov LV, Yaresko AN (2005) Phys Rev B 72:054441ADSCrossRefGoogle Scholar
  104. 104.
    Slater JC (1936) Phys Rev 49:931ADSCrossRefGoogle Scholar
  105. 105.
    van Vleck JH (1945) Rev Mod Phys 17:27ADSCrossRefGoogle Scholar
  106. 106.
    van Vleck JH (1953) Rev Mod Phys 25:220ADSzbMATHCrossRefGoogle Scholar
  107. 107.
    Goldmann JE (1953) Rev Mod Phys 25:108ADSCrossRefGoogle Scholar
  108. 108.
    Flude P (1995) Electron correlations in molecules and solids, 3rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  109. 109.
    Kandpal HC, Fecher GH, Felser C, Schönhense G (2006) Phys Rev B 73:094422ADSCrossRefGoogle Scholar
  110. 110.
    Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) J Phys Condens Matter 9:767ADSCrossRefGoogle Scholar
  111. 111.
    Fecher GH, Felser C (2007) J Phys D Appl Phys 40:1582ADSCrossRefGoogle Scholar
  112. 112.
    Bandyopadhyay T, Sarma DD (1989) Phys Rev B 39:3517ADSCrossRefGoogle Scholar
  113. 113.
    Chadov S, Fecher GH, Felser C, Minár J, Braun J, Ebert H (2009) J Phys D Appl Phys 42:084002ADSCrossRefGoogle Scholar
  114. 114.
    Fecher GH, Balke B, Ouardi S, Felser C, Schönhense G, Ikenaga E, Kim J-J, Ueda S, Kobayashi K (2007) J Phys D Appl Phys 40:1576ADSCrossRefGoogle Scholar
  115. 115.
    Ebert H, Schütz G (1991) J Appl Phys 69:4627ADSCrossRefGoogle Scholar
  116. 116.
    Orgassa D, Fujiwara H, Schulthess TC, Butler WH (1999) Phys Rev B 60:13237ADSCrossRefGoogle Scholar
  117. 117.
    Orgassa D, Fujiwara H, Schulthess TC, Butler WH (2000) J Appl Phys 87:5870ADSCrossRefGoogle Scholar
  118. 118.
    Attema JJ, Fang CM, Chioncel L, de Wijs GA, Lichtenstein IA, de Groot RA (2004) J Phys Condens Matter 15:S5517CrossRefGoogle Scholar
  119. 119.
    Miura Y, Shirai M, Nagao K (2004) J Appl Phys 95:7225ADSCrossRefGoogle Scholar
  120. 120.
    Inomata K, Okamura S, Goto R, Yezuka N (2003) Jpn J Appl Phys 42:L419ADSCrossRefGoogle Scholar
  121. 121.
    Pickett WE (1996) Phys Rev Lett 77:3185ADSCrossRefGoogle Scholar
  122. 122.
    Wurmehl S, Kandpal HC, Fecher GH, Felser C (2006) J Phys Condens Matter 18:6171ADSCrossRefGoogle Scholar
  123. 123.
    Pfleiderer C, Beouf J, Löhneysen H (2002) Phys Rev B 65:172404ADSCrossRefGoogle Scholar
  124. 124.
    Tomiyoshi S, Yamaguchi Y, Ohashi M (1987) Phys Rev B 36:2181ADSCrossRefGoogle Scholar
  125. 125.
    Hortami M, Sandratskii L, Zahn P, Mertig I (2009) J Appl Phys 105:07E506Google Scholar
  126. 126.
    Kämmerer S, Thomas A, Hütten A, Reiss G (2004) Appl Phys Lett 85:79ADSCrossRefGoogle Scholar
  127. 127.
    Kubota H, Nakata J, Oogange M, Ando Y, Sakuma A, Miyazaki T (2004) Jpn J Appl Phys 43:L984ADSCrossRefGoogle Scholar
  128. 128.
    Ishikawa T, Marukame T, Kijima H, Matsuda K-I, Uemura T, Yamamoto M (2006) Appl Phys Lett 89:192505ADSCrossRefGoogle Scholar
  129. 129.
    Tsunegi S, Sakuraba Y, Oogane M, Telling ND, Shelford LR, Arenholz E, van der Laan G, Hicken RJ, Takanashi K, Ando Y (2009) J Phys D Appl Phys 42:195004ADSCrossRefGoogle Scholar
  130. 130.
    Taira T, Ishikawa T, Itabashi N, Matsuda K, Uemura T, Yamamoto M (2009) J Phys D Appl Phys 42:084015ADSCrossRefGoogle Scholar
  131. 131.
    Herbot C, Jorge EA, Jordan M (2009) Appl Phys Lett 94:142504ADSCrossRefGoogle Scholar
  132. 132.
    Yakushiji K, Saito K, Mitani S, Takanashi K, Takahashi YK, Hono K (2006) Appl Phys Lett 88:222504ADSCrossRefGoogle Scholar
  133. 133.
    Furubayashi T, Kodama K, Sukegawa H, Takahashi YK, Inomata K, Hono K (2008) Appl Phys Lett 93:122507ADSCrossRefGoogle Scholar
  134. 134.
    Sakuraba Y, Iwase T, Mitani S, Takanashi K (2009) Appl Phys Lett 94:012511ADSCrossRefGoogle Scholar
  135. 135.
    Kodama K, Furubayashi T, Sukegawa H, Nakatani TM, Inomata K, Hono K (2009) J Appl Phys 105:07E905CrossRefGoogle Scholar
  136. 136.
    Nikolaev K, Kolbo P, Pokhil T, Peng X, Chen Y, Ambrose T, Mryasov O (2009) Appl Phys Lett 94:222501ADSCrossRefGoogle Scholar
  137. 137.
    Dong XY, Adelmann C, Xie JQ, Palmstrøm CJ, Lou X, Strand J, Crowell PA, Barnes J-P, Petford-Long AK (2005) Appl Phys Lett 86:102107ADSCrossRefGoogle Scholar
  138. 138.
    Okamura S, Miyazaki A, Sugimoto S, Tezuka N, Inomata K (2005) Appl Phys Lett 86:232503ADSCrossRefGoogle Scholar
  139. 139.
    Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M, Inomata K (2006) Appl Phys Lett 89:112514ADSCrossRefGoogle Scholar
  140. 140.
    Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T, Kubota H (2006) Appl Phys Lett 88:192508ADSCrossRefGoogle Scholar
  141. 141.
    Tezuka N, Ikeda N, Sugimoto S, Inomata K (2007) Jpn J Appl Phys 46:L454ADSCrossRefGoogle Scholar
  142. 142.
    Tsunegi S, Sakuraba Y, Oogane M, Takanashi K, Ando Y (2008) Appl Phys Lett 93:112506ADSCrossRefGoogle Scholar
  143. 143.
    Tezuka N, Ikeda N, Mitsuhashi F, Sugimoto S (2009) Appl Phys Lett 94:162504ADSCrossRefGoogle Scholar
  144. 144.
    Yamamoto M, Ishikawa T, Taira T, Li G-f, Matsuda K-I, Uemura T (2010) J Phys Condens Matter 22:164212ADSCrossRefGoogle Scholar
  145. 145.
    Mancoff FB, Bobo JF, Richter OE, Bessho K, Johnson PR, Sinclair R, Nix WD, White RL, Clemens BM (1999) J Mater Res 14:1560ADSCrossRefGoogle Scholar
  146. 146.
    Tanaka CT, Nowak J, Moodera JS (1999) J Appl Phys 86:6239ADSCrossRefGoogle Scholar
  147. 147.
    Soulen RJ Jr, Byers JM, Osofsky MS, Nadgorny B, Ambrose T, Cheng SF, Broussard PR, Tanaka CT, Nowack J, Moodera JS, Barry A, Coey MD (1998) Science 282:85ADSCrossRefGoogle Scholar
  148. 148.
    Jenkins SJ, King DA (2001) Surf Sci 494:L793ADSCrossRefGoogle Scholar
  149. 149.
    Jenkins SJ (2004) Phys Rev B 70:245401ADSCrossRefGoogle Scholar
  150. 150.
    Johnson PR, Kautzky MC, Mancoff FB, Kondo R, Clemens BM, White RL (1996) IEEE Trans Magn 32:4615ADSCrossRefGoogle Scholar
  151. 151.
    Kautzky MC, Mancoff FB, Bobo J-F, Johnson PR, White RL, Clemens BM (1997) J Appl Phys 81:4026ADSCrossRefGoogle Scholar
  152. 152.
    Felser C, Heitkamp B, Kronast F, Schmitz D, Cramm S, Drr HA, Elmers H-J, Fecher GH, Wurmehl S, Block T, Valdaitsev D, Nepijko SA, Gloskovskii A, Jakob G, Schnhense G, Eberhardt W (2003) J Phys Condens Matter 15:7019ADSCrossRefGoogle Scholar
  153. 153.
    Auth N, Jakob G, Block T, Felser C (2003) Phys Rev B 68:024403ADSCrossRefGoogle Scholar
  154. 154.
    Okamura S, Goto R, Sugimoto S, Tezuka N, Inomata K (2004) J Appl Phys 96:6561ADSCrossRefGoogle Scholar
  155. 155.
    Conca A, Jourdan M, Adrian H (2007) J Phys D Appl Phys 40:1534ADSCrossRefGoogle Scholar
  156. 156.
    Kandpal HC, Fecher GH, Felser C (2007) J Magn Magn Mater 310:1626ADSCrossRefGoogle Scholar
  157. 157.
    Gercsi Z, Rajanikanth A, Takahashi YK, Hono K, Kikuchi M, Tezuka N, Inomata K (2006) Appl Phys Lett 89:082512ADSCrossRefGoogle Scholar
  158. 158.
    Marukame T, Ishikawa T, Matsuda K-I, Uemura T, Yamamoto M (2006) J Appl Phys 99:08A904CrossRefGoogle Scholar
  159. 159.
    Ebke D, Thomas A, Hütten A, Balke B, Felser C, Schmalhorst J, Reiss G (2008) Phys Status Solidi (a) 205:2298ADSCrossRefGoogle Scholar
  160. 160.
    Tezuka N, Ikeda N, Sugimoto S, Inomata K (2006) Appl Phys Lett 89:252508ADSCrossRefGoogle Scholar
  161. 161.
    Oogane M, Sakuraba Y, Nakata J, Kubota H, Ando Y, Sakuma A, Miyazaki T (2006) J Phys D Appl Phys 39:834ADSCrossRefGoogle Scholar
  162. 162.
    Butler WH, Zhang X-G, Schulthess TC, MacLaren JM (2001) Phys Rev B 63:054416ADSCrossRefGoogle Scholar
  163. 163.
    Mathon J, Umerski A (2001) Phys Rev B 63:220403(R)ADSCrossRefGoogle Scholar
  164. 164.
    Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, Yang SH (2004) Nat Mater 3:862ADSCrossRefGoogle Scholar
  165. 165.
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Nat Mater 3:868ADSCrossRefGoogle Scholar
  166. 166.
    Miura Y, Uchida H, Oba Y, Nagao K, Shirai M (2007) J Phys Condens Matter 19:365228CrossRefGoogle Scholar
  167. 167.
    Yamamoto M, Marukame T, Ishikawa T, Matsuda K-I, Uemura T, Arita M (2006) J Phys D Appl Phys 39:824ADSCrossRefGoogle Scholar
  168. 168.
    Marukame T, Ishikawa T, Hakamata S, Matsuda K-I, Uemura T, Yamamoto M (2007) Appl Phys Lett 90:012508ADSCrossRefGoogle Scholar
  169. 169.
    Marukame T, Yamamoto M (2007) J Appl Phys 101:083906ADSCrossRefGoogle Scholar
  170. 170.
    Ishikawa T, Hakamata S, Matsuda K-I, Uemura T, Yamamoto M (2008) J Appl Phys 103:07A919CrossRefGoogle Scholar
  171. 171.
    Wang W, Lui E, Kodzuka M, Sukegawa H, Wojcik M, Jedryka E, Wu GH, Inomata K, Mitani S, Hono K (2010) Phys Rev B 81:140402(R)ADSCrossRefGoogle Scholar
  172. 172.
    Sakuraba Y, Izumi K, Iwase T, Bosu S, Saito K, Takanashi K, Miura Y, Futatsukawa K, Abe K, Shirai M (2010) Phys Rev B 82:094444ADSCrossRefGoogle Scholar
  173. 173.
    Nakatani TM, Furubayashi T, Kasai S, Sukegawa H, Takahashi YK, Mitani S, Hono K (2010) Appl Phys Lett 96:212501ADSCrossRefGoogle Scholar
  174. 174.
    Chadov S, Graf T, Chadova K, Dai X, Casper F, Fecher GH, Felser C (2011) Phys Rev Lett 107:047202ADSCrossRefGoogle Scholar
  175. 175.
    Nikolaev K, Anderson P, Kolbo P, Dimitrov D, Xue S, Peng X, Pokhil T, Cho H, Chen Y (2008) J Appl Phys 103:07F533CrossRefGoogle Scholar
  176. 176.
    Carey MJ, Childress JR, Maat S (2008) US Patent 2008/0112095Google Scholar
  177. 177.
    Carey MJ, Block T, Gurney BA (2004) Appl Phys Lett 85:4442ADSCrossRefGoogle Scholar
  178. 178.
    Lou X (2010) US Patent 2010/0103565Google Scholar
  179. 179.
    Zhang K, Li M, Zhou Y, Oikawa S, Yamada K, Koui K (2009) US Patent 2009/0257151Google Scholar
  180. 180.
    Ambrose T, Krebs JJ, Prinz GA (2000) Appl Phys Lett 76:3280ADSCrossRefGoogle Scholar
  181. 181.
    Picozzi S, Continenza A, Freeman AJ (2003) J Phys Chem Solids 64:1697ADSCrossRefGoogle Scholar
  182. 182.
    Hirohata A, Kurebayashi H, Okamura S, Kikuchi M, Masaki T, Nozaki T, Tezuka N, Inomata K (2005) J Appl Phys 97:103714ADSCrossRefGoogle Scholar
  183. 183.
    Hirohata A, Kikuchi M, Masaki T, Nozaki T, Tezuka N, Inomata K, Claydon JS, Xu YB, van der Laan G (2006) Curr Opin Solid State Mater Sci 10:93ADSCrossRefGoogle Scholar
  184. 184.
    Nagao K, Shirai M, Miura Y (2004) J Phys Condens Matter 16:S5725ADSCrossRefGoogle Scholar
  185. 185.
    Hickey MC, Damsgaard CD, Farrer I, Holmes SN, Husmann A, Hansen JB, Jacobsen CS, Ritchie DA, Lee RF, Jones GAC, Pepper M (2005) Appl Phys Lett 86:252106ADSCrossRefGoogle Scholar
  186. 186.
    Van Roy W, De Boeck J, Brijs B, Borghs G (2000) J Cryst Growth 227:862Google Scholar
  187. 187.
    Van Roy W, Wojcik M, Jedryka E, Nadolski S, Jalabert D, Brijs B, Borghs G, De Boeck J (2003) Appl Phys Lett 83:4214ADSCrossRefGoogle Scholar
  188. 188.
    Van Roy W, De Boeck J, Brijs B, Borghs G (2000) Appl Phys Lett 77:4190ADSCrossRefGoogle Scholar
  189. 189.
    Bach P, Bader AS, Ruster C, Gould C, Becker CR, Schmidt G, Molenkamp LW, Weigand W, Kumpf C, Umbach E, Urban R, Woltersdorf G, Heinrich B (2003) Appl Phys Lett 83:521ADSCrossRefGoogle Scholar
  190. 190.
    Ishida S, Masaki T, Fujii S, Asano S (1998) Physica B 245:1ADSCrossRefGoogle Scholar
  191. 191.
    Schmalhorst J, Kämmerer S, Sacher M, Reiss G, Hütten A, Scholl A (2004) Phys Rev B 70:024426ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tanja Graf
    • 1
    • 2
    • 3
    Email author
  • Claudia Felser
    • 1
  • Stuart S. P. Parkin
    • 4
  1. 1.Institute for Analytical and Inorganic ChemistryJohannes Gutenberg-UniversityMainzGermany
  2. 2.IBM Almaden Research CenterSan JoseUSA
  3. 3.Max-Planck-Institut für Chemical Physics of SolidsDresdenGermany
  4. 4.IBM-Stanford Spintronic Science and Applications Center (SpinAps), IBM Almaden Research CenterSan JoseUSA

Personalised recommendations