TMR and Al-O Based Magnetic Tunneling Junctions

  • Xiu-Feng HanEmail author
Reference work entry


AlOx is the most typical barrier material in the early research of high tunneling magneto-resistance (TMR) in magnetic tunnel junctions (MTJs) at room temperature (RT). AlOx is easily formed by oxidizing a pre-deposited Al layer. The MTJ with FM/I/FM sandwich core structure and the spin-dependent tunneling transport properties drew a wide range of interest resulting the so far largest magnetoresistance (MR) ratio of 81% at RT and 107% at 4.2 K in AlOx based tunnel junction. The different types of Al-O barrier based MTJs are Sandwich-Structured MTJ, Spin-Valve Type Pinned MTJ, Double Barrier Magnetic Tunnel Junction (DBMTJ), Half-Metal MTJ, Perpendicular Anisotropic MTJ, Dilute Magnetic Semiconductors Composite MTJ, Superconductors Composite MTJ, Granular Film Composite MTJ and Nano-Ring-Shaped MTJ. A lot of research has been done in this field regarding its practical application in devices and technology. Furthermore, the discovery of Spin-transfer torque (STT) effect is a remarkable achievement in the development process and rapid emergence of spintronics. This effect provides not only a new data writing strategy, but is also consistent with the development trend of high density devices. To reduce the critical switching current is the pursuing target both in lab and industry. The important applications of Al–O based MTJs including Magnetic Read Heads, Magnetic Sensors, Magnetic Random Access Memory (MRAM), Spin Transistors and Field Effect Transistors, Magnetic Logic Devices and Memristors will be discussed in details in this chapter to provide an advanced technological understanding to the readers.


Tunnel Junction Spin Valve Coulomb Blockade Free Layer Magnetic Tunnel Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Julliére M (1975) Tunneling between ferromagnetic films. Phys Lett A 54:225ADSCrossRefGoogle Scholar
  2. 2.
    Miyazaki T, Tezuka N (1995) Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J Magn Magn Mater 139:L231ADSCrossRefGoogle Scholar
  3. 3.
    Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett 74:3273ADSCrossRefGoogle Scholar
  4. 4.
    Wei HX, Qin QH, Ma M, Sharif R, Han XF (2007) 80 % TMR at room temperature for thin Al–O barrier magnetic tunnel junction with CoFeB as free and reference layers. J Appl Phys 101:09B501Google Scholar
  5. 5.
    Žutić I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323ADSCrossRefGoogle Scholar
  6. 6.
    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363ADSCrossRefGoogle Scholar
  7. 7.
    Du GX, Babu MR, Han XF, Deng JJ, Wang WZ, Zhao JH, Wang WD, Jinke Tang (2009) Tunneling magnetoresistance in (Ga,Mn)As/Al–O/CoFeB hybrid structures. J Appl Phys 105:07C707Google Scholar
  8. 8.
    Chang Y-M, Li KS, Chiang W-C, Lin M-T (2009) Superconductivity-induced magnetoresistance suppression in hybrid superconductor/magnetic tunnel junctions. Phys Rev B 79:012401ADSCrossRefGoogle Scholar
  9. 9.
    Sheng L, Chen Y, Teng HY, Ting CS (1999) Nonlinear transport in tunnel magnetoresistance systems. Phys Rev B 59:480ADSCrossRefGoogle Scholar
  10. 10.
    Montaigne F, Nassar J, Vaurès A, Nguyen Van Dau F, Petroff F, Schuhl A, Fert A (1997) Enhanced tunnel magnetoresistance at high bias voltage in double-barrier planar junctions. Appl Phys Lett 73:2829ADSCrossRefGoogle Scholar
  11. 11.
    Saito Y, Amano M, Nakajima K, Takahashi S, Sagoi M, Inomata K (2000) Correlation between barrier width, barrier height, and DC bias voltage dependences on the magnetoresistance ratio in Ir–Mn exchange biased single and double tunnel junctions. Jpn J Appl Phys 39:L1035ADSCrossRefGoogle Scholar
  12. 12.
    Zhang X-G, Wen ZC, Wei HX, Han XF (2010) Giant Coulomb blockade magnetoresistance in magnetic tunnel junctions with a granular layer. Phys Rev B 81:155122ADSCrossRefGoogle Scholar
  13. 13.
    Huai Y, Albert F, Nguyen P, Pakala M, Valet T (2004) Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl Phys Lett 84:3118ADSCrossRefGoogle Scholar
  14. 14.
    Slonczewski JC (1989) Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys Rev B 39:6995ADSCrossRefGoogle Scholar
  15. 15.
    Berger L (1984) Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J Appl Phys 55:1954ADSCrossRefGoogle Scholar
  16. 16.
    Tehrani S, Slaughter JM, Deherrera M et al (2003) Magnetoresistive random access memory using magnetic tunnel junctions. Proc IEEE 91:703CrossRefGoogle Scholar
  17. 17.
    Enge BN, Akerman J, Butcher B et al (2005) A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans Magn 41:132ADSCrossRefGoogle Scholar
  18. 18.
    Bader SD, Parkin SSP (2010) Annual review of condensed matter physics. Spintronics 1:71Google Scholar
  19. 19.
    Matsuda K, Kamijo A, Mitsuzuka T, Tsuge H (1999) Exchange-biased magnetic tunnel junctions fabricated with in situ natural oxidation. J Appl Phys 85:5261ADSCrossRefGoogle Scholar
  20. 20.
    Parkin SSP, Roche KP, Samant MG, Rice PM, Beyers RB, Scheuerlein RE, O’Sullivan EJ, Brown SL, Bucchigano J, Abraham DW, Yu Lu, Rooks M, Trouilloud PL, Wanner RA, Gallagher WJ (1999) Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J Appl Phys 85:5828ADSCrossRefGoogle Scholar
  21. 21.
    Zhang ZG, Freitas PP, Ramos AR, Barradas NP, Soares JC (2001) Resistance decrease in spin tunnel junctions by control of natural oxidation conditions. Appl Phys Lett 79:2219ADSCrossRefGoogle Scholar
  22. 22.
    Boeve H, De Boeck J, Borghs G (2001) Low-resistance magnetic tunnel junctions by in situ natural oxidation. J Appl Phys 89:482ADSCrossRefGoogle Scholar
  23. 23.
    Gallagher WJ, Parkin SSP, Yu Lu, Bian XP, Marley A, Roche KP, Altman RA, Rishton SA, Jahnes C, Shaw TM, Gang Xiao (1997) Microstructured magnetic tunnel junctions (invited). J Appl Phys 81:3741ADSCrossRefGoogle Scholar
  24. 24.
    Han XF, Oogane M, Kubota H, Ando Y, Miyazaki T (2000) Fabrication of high-magnetoresistance tunnel junctions using Co75Fe25 ferromagnetic electrodes. Appl Phys Lett 77:283ADSCrossRefGoogle Scholar
  25. 25.
    Sousa RC, Sun JJ, Soares V, Freitas PP, Kling A, da Silva MF, Soares JC (1998) Large tunneling magnetoresistance enhancement by thermal anneal. Appl Phys Lett 73:3288ADSCrossRefGoogle Scholar
  26. 26.
    LeClair P, Kohlhepp JT, Smits AA, Swagten HJM, Koopmans B, de Jonge WJM (2000) Optical and in situ characterization of plasma oxidized Al for magnetic tunnel junctions. J Appl Phys 87:6070ADSCrossRefGoogle Scholar
  27. 27.
    Wang D, Nordman C, Daughton JM, Qian Z, Fink J (2004) 70 % TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans Magn 40:2269ADSCrossRefGoogle Scholar
  28. 28.
    Shimazawa K, Kasahara N, Sun JJ, Araki S, Morita H, Matsuzaki M (2000) Electrical breakdown of the magnetic tunneling junction with an AlOx barrier formed by radical oxidation. J Appl Phys 87:5194ADSCrossRefGoogle Scholar
  29. 29.
    Boevea H, Girgis E, Schelten J, De Boeck J, Borghs G (2000) Strongly reduced bias dependence in spin–tunnel junctions obtained by ultraviolet light assisted oxidation. Appl Phys Lett 76:1048ADSCrossRefGoogle Scholar
  30. 30.
    Rottländer P, Kohlstedt H, Grünberg P, Girgis E (2000) Ultraviolet light assisted oxidation for magnetic tunnel junctions. J Appl Phys 87:6067ADSCrossRefGoogle Scholar
  31. 31.
    May U, Samm K, Kittur H, Hauch J, Calarco R, Rüdigera U, Güntherodt G (2001) Temperature-dependent magnetoresistance of magnetic tunnel junctions with ultraviolet light-assisted oxidized barriers. Appl Phys Lett 78:2026ADSCrossRefGoogle Scholar
  32. 32.
    Zhu T, Xiang X, Shen F, Zhang Z, Landry G, Dimitrov DV, García N, Xiao JQ (2002) Bulk contributions to tunnel magnetoresistance in magnetic tunnel junctions. Phys Rev B 66:094423ADSCrossRefGoogle Scholar
  33. 33.
    Shen F, Zhu T, Xiang XH, Xiao JQ, Voelkl E, Zhang Z (2003) Observation of the barrier structure in magnetic tunnel junctions using high-resolution electron microscopy and electron holography. Appl Phys Lett 83:5482ADSCrossRefGoogle Scholar
  34. 34.
    Sato M, Kobayshi K (1997) Spin-valve-like properties and annealing effect in ferromagnetic tunnel junctions. IEEE Trans Magn 33:3553ADSCrossRefGoogle Scholar
  35. 35.
    Sato M, Kikuchi H, Kobayashi K (1998) Ferromagnetic tunnel junctions with plasma-oxidized Al barriers and their annealing effects. J Appl Phys 83:6691ADSCrossRefGoogle Scholar
  36. 36.
    Tehrani S, Slaughter JM, Chen E, Durlam M, Shi J, DeHerrera M (1999) Progress and outlook for MRAM technology. IEEE Trans Magn 35:2814ADSCrossRefGoogle Scholar
  37. 37.
    Sun JJ, Shimazawa K, Kasahara N, Sato K, Saruki S, Kagami T, Redon O, Araki S, Morita H, Matsuzaki M (2000) Low resistance and high thermal stability of spin-dependent tunnel junctions with synthetic antiferromagnetic CoFe/Ru/CoFe pinned layers. Appl Phys Lett 76:2424ADSCrossRefGoogle Scholar
  38. 38.
    Cardoso S, Freitas PP, de Jesus C, Wei P, Soares JC (2000) Spin-tunnel-junction thermal stability and interface interdiffusion above 300 °C. Appl Phys Lett 76:610ADSCrossRefGoogle Scholar
  39. 39.
    Jun Soo Bae, Kyung Ho Shin, Taek Dong Lee, Hyuck Mo Lee (2002) Study of the effect of natural oxidation and thermal annealing on microstructures of AlOx in the magnetic tunnel junction by high-resolution transmission electron microscopy. Appl Phys Lett 80:1168ADSCrossRefGoogle Scholar
  40. 40.
    Wang Y, Zeng ZM, Han XF, Zhang XG, Sun XC, Zhang Z (2007) Temperature-dependent Mn-diffusion modes in CoFeB- and CoFe-based magnetic tunnel junctions: electron-microscopy studies. Phys Rev B 75:214424ADSCrossRefGoogle Scholar
  41. 41.
    Han XF, Wen ZC, Wei HX (2008) Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching. J Appl Phys 103:07E933Google Scholar
  42. 42.
    Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett 93:082508ADSCrossRefGoogle Scholar
  43. 43.
    Dieny B, Speriosu VS, Parkin SSP, Gurney BA, Wilhoit DR, Mauri D (1991) Giant magnetoresistive in soft ferromagnetic multilayers. Phys Rev B 43:1297ADSCrossRefGoogle Scholar
  44. 44.
    Zeng ZM, Jiang LX, Du GX, Zhan WS, Han XF (2006) Hightunnel magnetoresistance in Co–Fe–B based double barrier magnetic tunnel junction. J Magn Mater Magn 303:e219ADSCrossRefGoogle Scholar
  45. 45.
    Lee H, Chang IW, Byun SJ, Hong TK, Rhie K, Lee WY, Shin KH, Hwang CY, Lee SS, Lee BC (2002) TMR of double spin-valve type AF/FM/I/FM/I/FM/AF magnetic tunneling junctions. J Magn Magn Mater 240:137ADSCrossRefGoogle Scholar
  46. 46.
    Han XF, Zhao SF, Li FF, Daibou T, Kubota H, Ando Y, Miyazaki T (2004) Switching properties and dynamic domain structures in double barrier magnetic tunnel junctions. J Magn Magn Mater 282:225ADSCrossRefGoogle Scholar
  47. 47.
    Zhao SF, Zhao J, Zeng ZM, Han XF, Ando Y, Miyazaki T (2005) Tunneling current-induced butterfly-shaped domains and magnetization switching in double-barrier magnetic tunnel junctions. IEEE Trans Magn 41:2636ADSCrossRefGoogle Scholar
  48. 48.
    Colis S, Gieres G, Bar L, Wecker J (2003) Low tunnel magnetoresistance dependence versus bias voltage in double barrier magnetic tunnel junction. Appl Phys Lett 83:948ADSCrossRefGoogle Scholar
  49. 49.
    Tanaka CT, Nowak J, Moodera JS (1997) Magnetoresistance in ferromagnet-insulator-ferromagnet tunnel junctions with half-metallic ferromagnet NiMnSb compound. J Appl Phys 81:5515ADSCrossRefGoogle Scholar
  50. 50.
    Inomata K, Okamura S, Goto R, Tezuka N (2003) Large tunneling magnetoresistance at room temperature using a Heusler alloy with the B2 structure. Jpn J Appl Phys 42:L419ADSCrossRefGoogle Scholar
  51. 51.
    Sakuraba Y, Nakata J, Oogane M, Kubota H, Ando Y, Sakuma A, Miyazaki T (2005) Huge spin-polarization of L2(1)-ordered CO2 MnSi epitaxial Heusler alloy film. Jpn J Appl Phys Part 2 44:L1100CrossRefGoogle Scholar
  52. 52.
    Wei HX, Qin QH, Wen ZC, Han XF, Zhang X-G (2009) Magnetic tunnel junction sensor with Co/Pt perpendicular anisotropy ferromagnetic layer. Appl Phys Lett 94:172902ADSCrossRefGoogle Scholar
  53. 53.
    Nishimura N, Hirai T, Koganei A, Ikeda T, Okano K, Skiguchi Y, Osada Y (2002) Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory. J Appl Phys 91:5246ADSCrossRefGoogle Scholar
  54. 54.
    Dongwon Lim, Sungdong Kim, Seong-Rae Lee (2005) Magnetoresistance behavior of a magnetic tunnel junction with perpendicularly magnetized Co/Pd multilayers. J Appl Phys 97:10C902Google Scholar
  55. 55.
    Yu GQ, Chen L, Rizwan S, Zhao JH, XU K, Han XF (2011) Improved tunneling magnetoresistance in (Ga,Mn)As/AlOx/CoFeB magnetic tunnel junctions. Appl Phys Lett 98:262501ADSCrossRefGoogle Scholar
  56. 56.
    Jiang JS, Davidović D, Reich DH, Chien CL (1995) Oscillatory superconducting transition-temperature in Nb/Gd multilayers. Phys Rev Lett 74:314ADSCrossRefGoogle Scholar
  57. 57.
    Moraru IC, Pratt WP Jr, Birge NO (2006) Magnetization-dependent T-c shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet. Phys Rev Lett 96:037004ADSCrossRefGoogle Scholar
  58. 58.
    Giroud M, Courtois H, Hasselbach K, Mailly D, Pannetier B (1998) Superconducting proximity effect in a mesoscopic ferromagnetic wire. Phys Rev B 58:11872ADSCrossRefGoogle Scholar
  59. 59.
    Petrashov VT, Sosnin IA, Cox I, Parsons A, Troadec C (1999) Giant mutual proximity effects in ferromagnetic/superconducting nanostructures. Phys Rev Lett 83:3281ADSCrossRefGoogle Scholar
  60. 60.
    Dubonos SV, Geim AK, Novoselov KS, Grigorieva IV (2002) Spontaneous magnetization changes and nonlocal effects in mesoscopic ferromagnet-superconductor structures. Phys Rev B 65:220513(R)ADSCrossRefGoogle Scholar
  61. 61.
    Hong-ye Wu, Jing Ni, Jian-wang Cai, Zhao-hua Cheng, Young Sun (2007) Experimental evidence of magnetization modification by superconductivity in a Nb/Ni81Fe19 multilayer. Phys Rev B 76:024416ADSCrossRefGoogle Scholar
  62. 62.
    Monton C, de la Cruz F, Guimpel J (2008) Magnetic state modification induced by superconducting response in ferromagnet/superconductor Nb/Co superlattices. Phys Rev B 77:104521ADSCrossRefGoogle Scholar
  63. 63.
    Gittleman JI, Goldstein Y, Bozowski S (1972) Magnetic properties of granular nickel films. Phys Rev B 5:3609ADSCrossRefGoogle Scholar
  64. 64.
    Helman JS, Abeles B (1976) Tunneling of spin-polarized electrons and magnetoresistance in granular Ni films. Phys Rev Lett 37:1429ADSCrossRefGoogle Scholar
  65. 65.
    Fujimori H, Mitania S, Ohnumab S (1995) Tunnel-type GMR in metal-nonmetal granular alloy thin films. Mater Sci Eng B 31:219CrossRefGoogle Scholar
  66. 66.
    Luryi S (1985) Frequency limit of double-barrier resonant-tunneling oscillators. Appl Phys Lett 47:490ADSCrossRefGoogle Scholar
  67. 67.
    Averin DV, Nazarov YV (1990) Virtual electron diffusion during quantum tunneling of the electric charge. Phys Rev Lett 65:2446ADSCrossRefGoogle Scholar
  68. 68.
    Takahashi S, Maekawa S (1998) Effect of Coulomb blockade on magnetoresistance in ferromagnetic tunnel junctions. Phys Rev Lett 80:1758ADSCrossRefGoogle Scholar
  69. 69.
    Mitania S, Fujimoria H, Ohnumab S (1997) Spin-dependent tunneling phenomena in insulating granular systems. J Magn Magn Mater 165:141ADSCrossRefGoogle Scholar
  70. 70.
    Shang CH, Nowak J, Jansen R, Moodera JS (1998) Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys Rev B 58:R2917ADSCrossRefGoogle Scholar
  71. 71.
    Moodera JS, Nowak J, van de Veerdonk RJM (1998) Interface magnetism and spin wave scattering in ferromagnet-insulator-ferromagnet tunnel junctions. Phys Rev Lett 80:2941ADSCrossRefGoogle Scholar
  72. 72.
    MacDonald AH, Jungwirth T, Kasner M (1998) Temperature dependence of itinerant electron junction magnetoresistance. Phys Rev Lett 81:705ADSCrossRefGoogle Scholar
  73. 73.
    Garcia V, Bibes M, Barthélémy A, Bowen M, Jacquet E, Contour J-P, Fert A (2004) Temperature dependence of the interfacial spin polarization of La2/3Sr1/3MnO3. Phys Rev B 69:052403ADSCrossRefGoogle Scholar
  74. 74.
    Wang SG, Ward RCC, Du GX, Han XF, Wang C, Kohn A (2008) Temperature dependence of giant tunnel magnetoresistance in epitaxial Fe/MgO/Fe magnetic tunnel junctions. Phys Rev B 78:180411(R)ADSCrossRefGoogle Scholar
  75. 75.
    Shan R, Sukegawa H, Wang WH, Kodzuka M, Furubayashi T, Ohkubo T, Mitani S, Inomata K, Hono K (2009) Demonstration of half-metallicity in fermi-level-tuned Heusler alloy Co2FeAl0.5Si0.5 at room temperature. Phys Rev Lett 102:246601ADSCrossRefGoogle Scholar
  76. 76.
    Zhang S, Levy PM, Marley AC, Parkin SSP (1997) Quenching of magnetoresistance by hot electrons in magnetic tunnel junctions. Phys Rev Lett 79:3744ADSCrossRefGoogle Scholar
  77. 77.
    Bratkovsky AM (1997) Tunneling of electrons in conventional and half-metallic systems: towards very large magnetoresistance. Phys Rev B 56:2344ADSCrossRefGoogle Scholar
  78. 78.
    Bratkovsky AM (1998) Assisted tunneling in ferromagnetic junctions and half-metallic oxides. Appl Phys Lett 72:2334ADSCrossRefGoogle Scholar
  79. 79.
    Vedyayev A, Bagrets D, Bagrets A, Dieny B (2001) Resonant spin-dependent tunneling in spin-valve junctions in the presence of paramagnetic impurities. Phys Rev B 63:064429ADSCrossRefGoogle Scholar
  80. 80.
    Yuasa S, Sato T, Tamura E, Suzuki Y, Yamamori H, Ando K, Katayama T (2000) Magnetic tunnel junctions with single-crystal electrodes: a crystal anisotropy of tunnel magneto-resistance. Europhys Lett 52:344ADSCrossRefGoogle Scholar
  81. 81.
    Boeve H, Girgis E, Schelten J, De Boeck J, Borghs G (2000) Strongly reduced bias dependence in spin–tunnel junctions obtained by ultraviolet light assisted oxidation. Appl Phys Lett 76:1048ADSCrossRefGoogle Scholar
  82. 82.
    Ahn SJ, Kato T, Kubota H, Ando Y, Miyazaki T (2005) Bias-voltage dependence of magnetoresistance in magnetic tunnel junctions grown on Al2O3 (0001) substrates. Appl Phys Lett 86:102506ADSCrossRefGoogle Scholar
  83. 83.
    Ma QL (2011) Optimization and magneto-electronic transport properties of MgO based magnetic tunnel junctions. PhD thesisGoogle Scholar
  84. 84.
    Han XF, Andrew CC, Yu, Oogane M, Murai J, Daibou T, Miyazaki T (2001) Analyses of intrinsic magnetoelectric properties in spin-valve-type tunnel junctions with high magnetoresistance and low resistance. Phys Rev B 63:224404ADSCrossRefGoogle Scholar
  85. 85.
    Lu C, Wu MW, Han XF (2003) Magnon- and phonon-assisted tunneling in a high-magnetoresistance tunnel junction using Co75Fe25 ferromagnetic electrodes. Phys Lett A 319:205ADSCrossRefGoogle Scholar
  86. 86.
    Jansen R, Moodera JS (1998) Influence of barrier impurities on the magnetoresistance in ferromagnetic tunnel junctions. J Appl Phys 83:6682ADSCrossRefGoogle Scholar
  87. 87.
    Jansen R, Moodera JS (2000) Magnetoresistance in doped magnetic tunnel junctions: effect of spin scattering and impurity-assisted transport. Phys Rev B 61:9047ADSCrossRefGoogle Scholar
  88. 88.
    Ding HF, Wulfhekel W, Henk J, Bruno P, Kirschner J (2003) Absence of zero-bias anomaly in spin-polarized vacuum tunneling in Co(0001). Phys Rev Lett 90:116603ADSCrossRefGoogle Scholar
  89. 89.
    Zhang J, White RM (1998) Voltage dependence of magnetoresistance in spin dependent tunneling junctions. J Appl Phys 83:6512ADSCrossRefGoogle Scholar
  90. 90.
    Davis H, Maclaren JM (2000) Spin dependent tunneling at finite bias. J Appl Phys 87:5224ADSCrossRefGoogle Scholar
  91. 91.
    Cabrera G, García N (2002) Low voltage I–V characteristics in magnetic tunneling junctions. Appl Phys Lett 80:1782ADSCrossRefGoogle Scholar
  92. 92.
    Sharma M, Wang SX, Nickel JH (1999) Inversion of spin polarization and tunneling magnetoresistance in spin-dependent tunneling junctions. Phys Rev Lett 82:616ADSCrossRefGoogle Scholar
  93. 93.
    LeClair P, Kohlhepp JT, van de Vin CH, Wieldraaijer H, Swagten HJM, de Jong WJM (2002) Band structure and density of states effects in co-based magnetic tunnel junctions. Phys Rev Lett 88:107201ADSCrossRefGoogle Scholar
  94. 94.
    Sadamichi M, Teruya S (2002) Spin dependent transport in magnetic nanostructures, Chap 3. Taylor & Francis, London, p 132Google Scholar
  95. 95.
    Ando Y, Murai J, Kubota H, Miyazaki T (2000) Magnon-assisted inelastic excitation spectra of a ferromagnetic tunnel junction. J Appl Phys 87:5209ADSCrossRefGoogle Scholar
  96. 96.
    Appelbaum J (1966) “s-d” exchange model of zero-bias tunneling anomalies. Phys Rev Lett 17:91ADSCrossRefGoogle Scholar
  97. 97.
    Anderson PW (1966) Localized magnetic states and fermi-surface anomalies in tunneling. Phys Rev Lett 17:95ADSCrossRefGoogle Scholar
  98. 98.
    Joel A (1967) Appelbaum, exchange model of zero-bias tunneling anomalies. Phys Rev 154:633CrossRefGoogle Scholar
  99. 99.
    Wei HX, Qin QH, Ma QL, Zhang XG, Han XF (2010) Signatures of surface magnon and impurity scatterings in tunnel junctions. Phys Rev B 82:134436ADSCrossRefGoogle Scholar
  100. 100.
    Zhang X, Li B-Z, Sun G, Fu-Cho P (1997) Spin-polarized tunneling and magnetoresistance in ferromagnet/insulator (semiconductor) single and double tunnel junctions subjected to an electric field. Phys Rev B 56:5484ADSCrossRefGoogle Scholar
  101. 101.
    Vedyayev A, Ryzhanova N, Lacroix C, Giacomoni L, Dieny B (1997) Resonance in tunneling through magnetic valve tunnel junctions. Europhys Lett 39:219ADSCrossRefGoogle Scholar
  102. 102.
    Mathon J, Umerski A (1999) Theory of tunneling magnetoresistance in a junction with a nonmagnetic metallic interlayer. Phys Rev B 60:1117ADSCrossRefGoogle Scholar
  103. 103.
    Moodera JS, Nowak J, Kinder LR, Tedrow PM, van de Veerdonk RJM, Smits BA, van Kampen M, Swagten HJM, de Jonge WJM (1999) Quantum well states in spin-dependent tunnel structures. Phys Rev Lett 83:3029ADSCrossRefGoogle Scholar
  104. 104.
    LeClair P, Swagten HJM, Kohlhepp JT, van de Veedonk RJM, de Jonge WJM (2000) Apparent spin polarization decay in Cu-dusted Co/Al2O3/Co tunnel junctions. Phys Rev Lett 84:2933ADSCrossRefGoogle Scholar
  105. 105.
    LeClair P, Kohlhepp JT, Swagten HJM, de Jonge WJM (2001) Interfacial density of states in magnetic tunnel junctions. Phys Rev Lett 86:1066ADSCrossRefGoogle Scholar
  106. 106.
    Yuasa S, Nagahama T, Suzuki Y (2002) Spin-polarized resonant tunneling in magnetic tunnel junctions. Science 297:234ADSCrossRefGoogle Scholar
  107. 107.
    Matsumoto R, Fukushima A, Yakushiji K, Nishioka S, Nagahama T, Katayama T, Suzuki Y, Ando K, Yuasa S (2009) Spin-dependent tunneling in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions with an ultrathin Cr(001) spacer layer. Phys Rev B 79:174436ADSCrossRefGoogle Scholar
  108. 108.
    Greullet F, Tiusan C, Montaigne F, Hehn M, Halley D, Bengone O, Bowen M, Weber W (2007) Evidence of a symmetry-dependent metallic barrier in fully epitaxial MgO based magnetic tunnel junctions. Phys Rev Lett 99:187202ADSCrossRefGoogle Scholar
  109. 109.
    Wang Y, Zhang J, Zhang X-G, Cheng H-P, Han XF (2010) First-principles study of Fe/MgO based magnetic tunnel junctions with Mg interlayers. Phys Rev B 82:054405ADSCrossRefGoogle Scholar
  110. 110.
    Zhang J, Wang Y, Zhang X-G, Han XF (2010) Inverse and oscillatory magnetoresistance in Fe(001)/MgO/Cr/Fe magnetic tunnel junctions. Phys Rev B 82:134449ADSCrossRefGoogle Scholar
  111. 111.
    Zhang XD, Li B-Z, Sun G, Pu F-C (1998) Spin-polarized resonant tunneling and quantum-size effect in ferromagnetic tunnel junctions with double barriers subjected to an electric field. Phys Lett A 245:133ADSCrossRefGoogle Scholar
  112. 112.
    Zhang X, Li B, Sun G, Fucho P (1998) Giant tunneling magnetoresistance in ferromagnet/insulator (semiconductor) coupling double-tunnel junction subjected to electric field. Sci China Ser A Math 41:177ADSCrossRefGoogle Scholar
  113. 113.
    Barnas J, Fert A (1998) Magnetoresistance oscillations due to charging effects in double ferromagnetic tunnel junctions. Phys Rev Lett 80:1058ADSCrossRefGoogle Scholar
  114. 114.
    Barnas J, Fert A (1999) Interplay of spin accumulation and Coulomb blockade in double ferromagnetic junctions. J Magn Magn Mater 192:L391ADSCrossRefGoogle Scholar
  115. 115.
    Vedyayev A, Ryzhanova N, Vlutters R, Dieny B, Strelkov N (2000) Giant tunnel magnetoresistance in multilayered metal/oxide structures comprising multiple quantum wells. J Phys Condens Matter 10:5799ADSCrossRefGoogle Scholar
  116. 116.
    Vedyayev A, Ryzhanova N, Vlutters A, Dieny B, Strelkov N (2000) Voltage dependence of giant tunnel magnetoresistance in triple barrier magnetic systems. J Phys Condens Matter 12:1797ADSCrossRefGoogle Scholar
  117. 117.
    Zeng ZM, Han XF, Zhan WS, Wang Y, Zhang Z, Zhang S (2005) Oscillatory tunnel magnetoresistance in double barrier magnetic tunnel junctions. Phys Rev B 72:054419ADSCrossRefGoogle Scholar
  118. 118.
    Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48:7099ADSCrossRefGoogle Scholar
  119. 119.
    Berger L (1996) Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B 54:9353ADSCrossRefGoogle Scholar
  120. 120.
    Zheng Z, Qi Y, Xing DY, Dong J (1999) Oscillating tunneling magnetoresistance in magnetic double-tunnel-junction structures. Phys Rev B 59:14505ADSCrossRefGoogle Scholar
  121. 121.
    Wilczynski M, Barnas J (2000) Tunnel magnetoresistance in ferromagnetic double-barrier planar junctions: coherent tunneling regime. J Magn Magn Mater 221:373ADSCrossRefGoogle Scholar
  122. 122.
    Wilczynski M, Barnas J (2000) Coherent tunneling in ferromagnetic planar junctions: role of thin layers at the barriers. J Appl Phys 88:5230ADSCrossRefGoogle Scholar
  123. 123.
    Majumdar K, Hershield S (1998) Magnetoresistance of the double-tunnel-junction Coulomb blockade with magnetic metals. Phys Rev B 57:11521ADSCrossRefGoogle Scholar
  124. 124.
    Bartass YV, Nazarov JI, Bauer GEW (1999) Spin accumulation in small ferromagnetic double-barrier junctions. Phys Rev B 59:93ADSCrossRefGoogle Scholar
  125. 125.
    Imamura H, Takahasi S, Maekawa S (1999) Spin-dependent Coulomb blockade in ferromagnet/normal-metal/ferromagnet double tunnel junctions. Phys Rev B 59:6017ADSCrossRefGoogle Scholar
  126. 126.
    Zeng ZM, Feng JF, Wang Y, Zhang XG, Han XF, Zhan WS, Zhang Z (2006) Probing spin-flip scattering in ballistic nanosystems. Phys Rev Lett 97:106605ADSCrossRefGoogle Scholar
  127. 127.
    MacLaren JM, Zhang X-G, Butler WH (1997) Validity of the Julliere model of spin-dependent tunneling. Phys Rev B 56:11827ADSCrossRefGoogle Scholar
  128. 128.
    Jedema J, Filip AT, van Wees BJ (2001) Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410:345ADSCrossRefGoogle Scholar
  129. 129.
    Barnas J, Weymann I (2008) Spin effects in single-electron tunneling. J Phys Condens Matter 20:423202ADSCrossRefGoogle Scholar
  130. 130.
    Fettar F, Lee S-F, Petroff F, Vaures A, Holody P, Schelp LF, Fert A (2002) Temperature and voltage dependence of the resistance and magnetoresistance in discontinuous double tunnel junctions. Phys Rev B 65:174415ADSCrossRefGoogle Scholar
  131. 131.
    Yakushiji K, Ernult F, Imamura H, Yamane K, Mitani S, Takanashi K, Takahashi S, Maekawa S, Fujimori H (2005) Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nat Mater 4:57ADSCrossRefGoogle Scholar
  132. 132.
    Feng JF, Kim T-H, Han XF, Zhang X-G, Wang Y, Zou J, Yu DB, Yan H, Li AP (2008) Space-charge trap mediated conductance blockade in tunnel junctions with half-metallic electrodes. Appl Phys Lett 93:192057Google Scholar
  133. 133.
    Liu YW, Zhang ZZ, Freitas PP, Martins JL (2003) Current-induced magnetization switching in magnetic tunnel junctions. Appl Phys Lett 82:2871ADSCrossRefGoogle Scholar
  134. 134.
    Wen ZC, Wei HX, Han XF (2007) Patterned nanoring magnetic tunnel junctions. Appl Phys Lett 91:122511ADSCrossRefGoogle Scholar
  135. 135.
    Wei HX, He J, Wen ZC, Han XF, Zhan W, Zhang S (2008) Effects of current on nanoscale ring-shaped magnetic tunnel junctions. Phys Rev B 77:134432ADSCrossRefGoogle Scholar
  136. 136.
    Miltat J, Albuquerque G, Thiaville A, Vouille C (2001) Spin transfer into an inhomogeneous magnetization distribution. J Appl Phys 89:6982ADSCrossRefGoogle Scholar
  137. 137.
    Wei HX, Zhu FQ, Han XF, Wen ZC, Chien CL (2008) Current-induced multiple spin structures in 100-nm nanoring magnetic tunnel junctions. Phys Rev B 77:224432ADSCrossRefGoogle Scholar
  138. 138.
    Freitas PP, Cardoso S, Sousa R, Ku W, Ricardo F, Virginia C, Conde JP (2000) Spin dependent tunnel junctions for memory and read-head applications. IEEE Trans Magn 36:2796ADSCrossRefGoogle Scholar
  139. 139.
    Song D, Nowak J, Larson R, Kolbo P, Chellew R (2000) Demonstrating a tunneling magneto-resistive read head. IEEE Trans Magn 36:2545ADSCrossRefGoogle Scholar
  140. 140.
    Kobayashi K, Akimoto H (2006) TMR film and head technologies. FUJITSU Sci Tech J 42:139Google Scholar
  141. 141.
    Mao SN et al (2006) Commercial TMR heads for hard disk drives: characterization and extendibility at 300 Gbit/in2. IEEE Trans Magn 42:97ADSCrossRefGoogle Scholar
  142. 142.
    Tondra M, Daughton JM, Wang D, Beech RS, Fink A, Taylor JA (1998) Picotesla field sensor design using spin-dependent tunneling devices. J Appl Phys 83:6688ADSCrossRefGoogle Scholar
  143. 143.
    Pannetier M, Fermon C, Le Goff G, Simola J, Kerr E (2004) Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304:1648ADSCrossRefGoogle Scholar
  144. 144.
    Shen W-F, Liu X-Y, Mazumdar D, Xiao G (2005) In situ detection of single micron-sized magnetic beads using magnetic tunnel junction sensors. Appl Phys Lett 86:253901ADSCrossRefGoogle Scholar
  145. 145.
    Piedade M, Sousa LA, de Almeida TM, Germano J, da Costa BD, Lemos JM, Freitas PP, Ferreira HA, Cardoso FA (2006) A new hand-held microsystem architecture for biological analysis. IEEE Trans Circuit Syst I Regul Pap 53:2384CrossRefGoogle Scholar
  146. 146.
    Shen W, Schrag BD, Carter MJ, Xiao G (2008) Quantitative detection of DNA labeled with magnetic nanoparticles using arrays of MgO- based magnetic tunnel junction sensors. Appl Phys Lett 93:033903ADSCrossRefGoogle Scholar
  147. 147.
    van Dijken S, Jiang X, Parkin SSP (2002) Room temperature operation of a high output current magnetic tunnel transistor. Appl Phys Lett 80:3364ADSCrossRefGoogle Scholar
  148. 148.
    van Dijken S, Jiang X, Parkin SSP (2003) Comparison of magnetocurrent and transfer ratio in magnetic tunnel transistors with spin-valve bases containing Cu and Au spacer layers. Appl Phys Lett 82:775ADSCrossRefGoogle Scholar
  149. 149.
    Parkin SSP, Jiang X, Kaiser C, Panchula A, Roche K, Samant M (2003) Magnetically engineered spintronic sensors and memory. Proc IEEE 91:661CrossRefGoogle Scholar
  150. 150.
    Black WC Jr, Das B (2000) Programmable logic using giant-magnetoresistance and spin-dependent tunneling devices (invited). J Appl Phys 87:6674ADSCrossRefGoogle Scholar
  151. 151.
    Ney A, Pampuch C, Koch R, Ploog KH (2003) Programmable computing with a single magnetoresistive element. Nature 425:485ADSCrossRefGoogle Scholar
  152. 152.
    Han XF, Wen ZC, Wang Y, Wang L, Wei HX (2008) Nano-scale patterned magnetic tunnel junction and its device applications. AAPPS Bull 18:24Google Scholar
  153. 153.
    Chua LO (1971) The missing circuit element. IEEE Trans Circuit Theory 18:507CrossRefGoogle Scholar
  154. 154.
    Strukov DB (2008) The missing memristor found. Nature 453:80ADSCrossRefGoogle Scholar
  155. 155.
    Krzysteczko P (2009) Memristive switching of MgO based magnetic tunnel junctions. Appl Phys Lett 95:112508ADSCrossRefGoogle Scholar
  156. 156.
    Butler WH, Zhang X-G, Schulthess TC, MacLaren JM (2001) Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys Rev B 63:054416ADSCrossRefGoogle Scholar
  157. 157.
    Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B, Samant M, See-Hun Yang (2004) Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat Mater 3:862ADSCrossRefGoogle Scholar
  158. 158.
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3:868ADSCrossRefGoogle Scholar
  159. 159.
    Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H (2008) Tunnel magnetoresistance of 604 % at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett 93:082508ADSCrossRefGoogle Scholar
  160. 160.
    Wei S-H, Zhang SB (2001) First-principles study of cation distribution in eighteen closed-shell AIIB2IIIO4 and AIVB2IIO4 spinel oxides. Phys Rev B 63:045112MathSciNetADSCrossRefGoogle Scholar
  161. 161.
    Sukegawa H et al (2010) Tunnel magnetoresistance with improved bias voltage dependence in lattice-matched Fe/spinel MgAl2O4/Fe(001) junctions. Appl Phys Lett 96:212505ADSCrossRefGoogle Scholar
  162. 162.
    Zhang J, Han XF, Zhang XG Spinel as spin-filter barrier for magnetic tunnel junctions (Unpublished)Google Scholar
  163. 163.
    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan HD, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H (2010) A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat Mater 9:721ADSCrossRefGoogle Scholar
  164. 164.
    Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, Miyazaki T (2011) Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy. Phys Rev Lett 106:117201ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Chinese Academy of SciencesState Key Laboratory of Magnetism, Institute of PhysicsBeijingChina

Personalised recommendations